scholarly journals Reduction of gaseous emissions from swine manure: effect of biochar dose and reapplication

2021 ◽  
Author(s):  
Baitong Chen ◽  
Jacek A Koziel ◽  
Chumki Banik ◽  
Hantian Ma ◽  
Myeongseong Lee ◽  
...  
2021 ◽  
pp. 126300
Author(s):  
Balasubramani Ravindran ◽  
Mukesh Kumar Awasthi ◽  
Natchimuthu Karmegam ◽  
Soon Woong Chang ◽  
Dhiraj Kumar Chaudhary ◽  
...  

Author(s):  
Zhanibek Meiirkhanuly ◽  
Jacek A. Koziel ◽  
Baitong Chen ◽  
Andrzej Białowiec ◽  
Myeongseong Lee ◽  
...  

Environmental impact associated with odor and gaseous emissions from animal manure is one of the challenges for communities, farmers, and regulatory agencies. Microbe-based manure additives treatments are marketed and used by farmers for mitigation of emissions. However, their performance is difficult to assess objectively. Thus, comprehensive, practical, and low-cost treatments are still in demand. We have been advancing such treatments based on physicochemical principles. The objective of this research was to test the effect of the surficial application of a thin layer (¼"; 6.3 mm) of biochar on the mitigation of gaseous emissions (as the percent reduction, % R) from swine manure. Two types of biochar were tested: highly alkaline and porous (HAP) biochar made from corn stover and red oak (RO), both with different pH and morphology. Three 30-day trials were conducted with a layer of HAP and RO (2.0 & 1.65 kg∙m-2, respectively) applied on manure surface, and emissions of ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic compounds (VOCs) were measured. The manure and biochar type and properties had an impact on the mitigation effect and its duration. RO significantly reduced NH3 (19-39%) and p-cresol (66-78%). H2S was mitigated (16~23%), but not significantly for all trials. Significant (66~78%) reductions for p-cresol were observed for all trials. The phenolic VOCs had relatively high % R in most trials but not significantly for all trials. HAP reduced NH3 (4~21%) and H2S (2~22%), but not significantly for all trials. Significant % R for p-cresol (91~97%) and skatole (74~95%) were observed for all trials. The % R for phenol and indole ranged from (60~99%) & (29~94%) but was not significant for all trials. The impact on GHGs, isobutyric acid, and the odor was mixed with some mitigation and generation effects. However, larger-scale experiments are needed to understand how biochar properties and the dose and frequency of application can be optimized to mitigate odor and gaseous emissions from swine manure. The lessons learned can also be applicable to surficial biochar treatment of gaseous emissions from other waste and area sources.


Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Chumki Banik ◽  
Hantian Ma ◽  
Myeongseong Lee ◽  
...  

Odorous gas emissions from swine production have been a concern for neighbors and communities near livestock farms. Manure storage is one of the main sources of gaseous emissions. Manure additive products are marketed as a simple solution to this environmental challenge. Manure additives are user-friendly for producers and can be applied (e.g., periodically poured into manure) without changing the current manure storage structure. Little scientific data exist on how these products perform in mitigating gaseous emissions from swine manure. The research objective was to evaluate the effectiveness of 12 marketed manure additives on mitigating odor, ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic compounds (VOCs) from stored swine manure. A controlled pilot-scale setup was used to conduct 8-week long trials using manufacturer-prescribed dosages of additives into swine manures. Manure was outsourced from three swine farms to represent a variety of manure storage types and other factors affecting the properties. Measured gaseous emissions were compared between the treated and untreated manure. None of the tested products showed a significant reduction in gaseous emissions when all (n = 3) manures were treated as replicates. Selected products showed a wide range of statistically-significant reduction and generation of gaseous emissions when emissions were compared in pairs of manure types from one farm. The latter observation highlighted the lack of consistent mitigation of gaseous emissions by manure additives. The results of this study do not warrant full-scale trials with the tested products.


Author(s):  
Zhanibek Meiirkhanuly ◽  
Jacek A. Koziel ◽  
Baitong Chen ◽  
Andrzej Białowiec ◽  
Myeongseong Lee ◽  
...  

Environmental impact associated with odor and gaseous emissions from animal manure is one of the challenges for communities, farmers, and regulatory agencies. Microbe-based manure additives treatments are marketed and used by farmers for mitigation of emissions. However, their performance is difficult to assess objectively. Thus, a comprehensive, practical, and low-cost treatments are still in demand. We have been advancing such treatments based on physicochemical principles. The objective of this research was to test the effect of the surficial application of a thin layer (¼"; 6.3 mm) of biochar on the mitigation of gaseous emissions from swine manure. Two types of biochar were tested: highly alkaline and porous (HAP) biochar made from corn stover and red oak (RO), both with different pH and morphology. Three 30-day trials were conducted with a layer of HAP and RO (2.0 & 1.65 kg∙m-2, respectively) applied on manure surface, and emissions of ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic compounds (VOCs) were measured. A significant reduction of NH3 and phenol emissions was observed. In the case of H2S, CH4, CO2, N2O, and other odorous VOCs, the biochar treatment reduced the emissions during the first 1~2 weeks, followed by either no effect or even (in some cases) increase of emissions. Based on this initial lab-scale testing, biochar is promising to be an effective, practical, and economical treatment to reduce emissions from stored swine manure. However, larger-scale experiments are needed to understand how biochar properties and the dose and frequency of application can be optimized to mitigate odor and gaseous emissions from swine manure. The lessons learned can also be applicable to consider using biochar for surficial applications to mitigate gaseous emissions from other types of waste and area sources.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 940 ◽  
Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Andrzej Białowiec ◽  
Myeongseong Lee ◽  
Hantian Ma ◽  
...  

Acute releases of hydrogen sulfide (H2S) are of serious concern in agriculture, especially when farmers agitate manure to empty storage pits before land application. Agitation can cause the release of dangerously high H2S concentrations, resulting in human and animal fatalities. To date, there is no proven technology to mitigate these short-term releases of toxic gas from manure. In our previous research, we have shown that biochar, a highly porous carbonaceous material, can float on manure and mitigate gaseous emissions over extended periods (days–weeks). In this research, we aim to test the hypothesis that biochar can mitigate H2S emissions over short periods (minutes–hours) during and shortly after manure agitation. The objective was to conduct proof-of-the-concept experiments simulating the treatment of agitated manure. Two biochars, highly alkaline and porous (HAP, pH 9.2) made from corn stover and red oak (RO, pH 7.5), were tested. Three scenarios (setups): Control (no biochar), 6 mm, and 12 mm thick layers of biochar were surficially-applied to the manure. Each setup experienced 3 min of manure agitation. Real-time concentrations of H2S were measured immediately before, during, and after agitation until the concentration returned to the initial state. The results were compared with those of the Control using the following three metrics: (1) the maximum (peak) flux, (2) total emission from the start of agitation until the concentration stabilized, and (3) the total emission during the 3 min of agitation. The Gompertz’s model for determination of the cumulative H2S emission kinetics was developed. Here, 12 mm HAP biochar treatment reduced the peak (1) by 42.5% (p = 0.125), reduced overall total emission (2) by 17.9% (p = 0.290), and significantly reduced the total emission during 3 min agitation (3) by 70.4%. Further, 6 mm HAP treatment reduced the peak (1) by 60.6%, and significantly reduced overall (2) and 3 min agitation’s (3) total emission by 64.4% and 66.6%, respectively. Moreover, 12 mm RO biochar treatment reduced the peak (1) by 23.6%, and significantly reduced overall (2) and 3 min total (3) emission by 39.3% and 62.4%, respectively. Finally, 6 mm RO treatment significantly reduced the peak (1) by 63%, overall total emission (2) by 84.7%, and total emission during 3 min agitation (3) by 67.4%. Biochar treatments have the potential to reduce the risk of inhalation exposure to H2S. Both 6 and 12 mm biochar treatments reduced the peak H2S concentrations below the General Industrial Peak Limit (OSHA PEL, 50 ppm). The 6 mm biochar treatments reduced the H2S concentrations below the General Industry Ceiling Limit (OSHA PEL, 20 ppm). Research scaling up to larger manure volumes and longer agitation is warranted.


Data ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 54 ◽  
Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Chumki Banik ◽  
Hantian Ma ◽  
Myeongseong Lee ◽  
...  

Odor and gaseous emissions from the swine industry are of concern for the wellbeing of humans and livestock. Additives applied to the swine manure surface are popular, marketed products to solve this problem and relatively inexpensive and easy for farmers to use. There is no scientific data evaluating the effectiveness of many of these products. We evaluated 12 manure additive products that are currently being marketed on their effectiveness in mitigating odor and gaseous emissions from swine manure. We used a pilot-scale system simulating the storage of swine manure with a controlled ventilation of headspace and periodic addition of manure. This dataset contains measured concentrations and estimated emissions of target gases in manure headspace above treated and untreated swine manure. These include ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (CO2, CH4, and N2O), volatile organic compounds (VOC), and odor. The experiment to test each manure additive product lasted for two months; the measurements of NH3 and H2S were completed twice a week; others were conducted weekly. The manure for each test was collected from three different farms in central Iowa to provide the necessary variety in stored swine manure properties. This dataset is useful for further analyses of gaseous emissions from swine manure under simulated storage conditions and for performance comparison of marketed products for the mitigation of gaseous emissions. Ultimately, swine farmers, the regulatory community, and the public need to have scientific data informing decisions about the usefulness of manure additives.


2020 ◽  
Vol 12 (18) ◽  
pp. 7587
Author(s):  
Lavanya Madhavaraj ◽  
Ho-Dong Lim ◽  
Kong-Min Kim ◽  
Dae-Hyuk Kim ◽  
Gui Hwan Han

Manures from livestock industries and farmyards should be managed for land application. Currently, a deep pit or barn system is adopted by many swine farms for manure management, therefore releasing harmful gases and rising the total global emissions of GHGs. This research focuses on the effectiveness of the brown seaweed Sargassum horneri as a masking agent to mitigate odor-generating gaseous pollutants and reduce the emissions of volatile fatty acids (VFAs) from swine manure storage facilities. Using an optimized procedure, we compared the gaseous emissions from two manure storage barns, one containing swine manure masked with S. horneri and the other without masking as a control, over a 30-day period. The results showed that, compared to the control, seaweed masking significantly reduced the sulfide and VFA contents. Furthermore, reductions of 99.48% in H2S, 60 ± 5.21% in NH3 and 74.28 ± 2.14% in gaseous amine emissions were observed within the experimental period. Intriguingly, seaweed masking had beneficial effects, decreasing the total odor content by 97.78 ± 3.15% and increasing the nutrient quality of the manure. S. horneri has great potential as a masking agent in swine manure management to control environmental pollution.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1179 ◽  
Author(s):  
Zhanibek Meiirkhanuly ◽  
Jacek A. Koziel ◽  
Baitong Chen ◽  
Andrzej Białowiec ◽  
Myeongseong Lee ◽  
...  

Environmental impact associated with odor and gaseous emissions from animal manure is one of the challenges for communities, farmers, and regulatory agencies. Microbe-based manure additives treatments are marketed and used by farmers for mitigation of emissions. However, their performance is difficult to assess objectively. Thus, comprehensive, practical, and low-cost treatments are still in demand. We have been advancing such treatments based on physicochemical principles. The objective of this research was to test the effect of the surficial application of a thin layer (¼ inches; 6.3 mm) of biochar on the mitigation of gaseous emissions (as the percent reduction, % R) from swine manure. Two types of biochar were tested: highly alkaline and porous (HAP) biochar made from corn stover and red oak (RO), both with different pH and morphology. Three 30-day trials were conducted with a layer of HAP and RO (2.0 & 1.65 kg∙m−2, respectively) applied on manure surface, and emissions of ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic compounds (VOCs) were measured. The manure and biochar type and properties had an impact on the mitigation effect and its duration. RO significantly reduced NH3 (19–39%) and p-cresol (66–78%). H2S was mitigated (16~23%), but not significantly for all trials. The phenolic VOCs had relatively high % R in most trials but not significantly for all trials. HAP reduced NH3 (4~21%) and H2S (2~22%), but not significantly for all trials. Significant % R for p-cresol (91~97%) and skatole (74~95%) were observed for all trials. The % R for phenol and indole ranged from (60~99%) and (29~94%) but was not significant for all trials. The impact on GHGs, isobutyric acid, and the odor was mixed with some mitigation and generation effects. However, larger-scale experiments are needed to understand how biochar properties and the dose and frequency of application can be optimized to mitigate odor and gaseous emissions from swine manure. The lessons learned can also be applicable to surficial biochar treatment of gaseous emissions from other waste and area sources.


2020 ◽  
Vol 8 ◽  
Author(s):  
Zhanibek Meiirkhanuly ◽  
Jacek A. Koziel ◽  
Andrzej Bialowiec ◽  
Chumki Banik ◽  
Robert C. Brown

Author(s):  
Myeongseong Lee ◽  
Jacek A. Koziel ◽  
Wyatt Murphy ◽  
William S. Jenks ◽  
Baitong Chen ◽  
...  

It is essential to mitigate gaseous emissions that result from poultry and livestock production to increase industry sustainability. Odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gases (GHGs) have detrimental effects on the quality of life in rural communities, the environment, and climate. This study's objective was to evaluate the photocatalytic UV treatment of gaseous emissions of odor, odorous VOCs, NH3, and other gases (GHGs, O3 – sometimes considered as by-products of UV treatment) from stored swine manure on a pilot-scale. The manure emissions were treated in fast-moving air using a mobile lab equipped with UV-A and UV-C lights and TiO2-based photocatalyst. Treated gas airflow (0.25 to 0.76 m3/s) simulates output from a small ventilation fan in a barn. Through controlling the light intensity and airflow, UV dose was tested for techno-economic analyses. The treatment effectiveness depended on the UV dose and wavelength. Under UV-A (367 nm) photocatalysis, the percent reduction of targeted gases was up to i) 63% of odor, ii) 51%, 51%, 53%, 67%, and 32% of acetic acid, propanoic acid, butanoic acid, p-cresol, and indole, respectively, iii) 14% of nitrous oxide (N2O), iv) 100% of O3, and 26% generation of CO2. Under UV-C (185+254 nm) photocatalysis, the percent reductions of target gases were up to i) 54% and 47% for p-cresol and indole, respectively, ii) 25% of N2O, iii) 71% of CH4, and 46% & 139% generation of CO2 & O3, respectively. The results proved that the UV technology was sufficiently effective in treating odorous gases, and the mobile lab was ready for farm-scale trials. The UV technology can be considered for the scaled-up treatment of emissions and air quality improvement inside livestock barns.


Sign in / Sign up

Export Citation Format

Share Document