scholarly journals The Impact of Surficial Biochar Treatment on Acute H2S Emissions during Swine Manure Agitation before Pump-Out: Proof-of-the-Concept

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 940 ◽  
Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Andrzej Białowiec ◽  
Myeongseong Lee ◽  
Hantian Ma ◽  
...  

Acute releases of hydrogen sulfide (H2S) are of serious concern in agriculture, especially when farmers agitate manure to empty storage pits before land application. Agitation can cause the release of dangerously high H2S concentrations, resulting in human and animal fatalities. To date, there is no proven technology to mitigate these short-term releases of toxic gas from manure. In our previous research, we have shown that biochar, a highly porous carbonaceous material, can float on manure and mitigate gaseous emissions over extended periods (days–weeks). In this research, we aim to test the hypothesis that biochar can mitigate H2S emissions over short periods (minutes–hours) during and shortly after manure agitation. The objective was to conduct proof-of-the-concept experiments simulating the treatment of agitated manure. Two biochars, highly alkaline and porous (HAP, pH 9.2) made from corn stover and red oak (RO, pH 7.5), were tested. Three scenarios (setups): Control (no biochar), 6 mm, and 12 mm thick layers of biochar were surficially-applied to the manure. Each setup experienced 3 min of manure agitation. Real-time concentrations of H2S were measured immediately before, during, and after agitation until the concentration returned to the initial state. The results were compared with those of the Control using the following three metrics: (1) the maximum (peak) flux, (2) total emission from the start of agitation until the concentration stabilized, and (3) the total emission during the 3 min of agitation. The Gompertz’s model for determination of the cumulative H2S emission kinetics was developed. Here, 12 mm HAP biochar treatment reduced the peak (1) by 42.5% (p = 0.125), reduced overall total emission (2) by 17.9% (p = 0.290), and significantly reduced the total emission during 3 min agitation (3) by 70.4%. Further, 6 mm HAP treatment reduced the peak (1) by 60.6%, and significantly reduced overall (2) and 3 min agitation’s (3) total emission by 64.4% and 66.6%, respectively. Moreover, 12 mm RO biochar treatment reduced the peak (1) by 23.6%, and significantly reduced overall (2) and 3 min total (3) emission by 39.3% and 62.4%, respectively. Finally, 6 mm RO treatment significantly reduced the peak (1) by 63%, overall total emission (2) by 84.7%, and total emission during 3 min agitation (3) by 67.4%. Biochar treatments have the potential to reduce the risk of inhalation exposure to H2S. Both 6 and 12 mm biochar treatments reduced the peak H2S concentrations below the General Industrial Peak Limit (OSHA PEL, 50 ppm). The 6 mm biochar treatments reduced the H2S concentrations below the General Industry Ceiling Limit (OSHA PEL, 20 ppm). Research scaling up to larger manure volumes and longer agitation is warranted.

2021 ◽  
Author(s):  
Thomas Theurer ◽  
David Muirhead ◽  
David Jolley ◽  
Dmitri Mauquoy

<p>Raman spectroscopy represents a novel methodology of characterising plant-fire interactions through geological history, with enormous potential. Applications of Raman spectroscopy to charcoal have shown that this is an effective method of understanding intensity changes across palaeofire regimes. Such analyses have relied on the determination of appropriate Raman parameters, given their relationship with temperature of formation and microstructural changes in reference charcoals. Quantitative assessments of charcoal microstructure have also been successfully applied to the assessment of carbonaceous maturation under alternate thermal regimes, such as pyroclastic volcanism. Palaeowildfire systems in association with volcanism may present a complex history of thermal maturation, given interactions between detrital charcoals and volcanogenic deposition. However, whilst palaeofire and volcanic maturation of carbonaceous material are well understood individually, their interaction has yet to be characterised. Here we present the first analysis of palaeofire charcoals derived from volcanic ignition utilising Raman spectroscopy. Our results indicate that complex interactions between volcanism and palaeofire systems may be better understood by the characterisation of charcoal microstructure, alongside palaeobotanical and ecosystem studies. Understanding the unique relationship between wildfires and volcanism, and the impact that this has on the fossil record, may better assist our understanding of wildfire systems in deep history. Further still, this highlights the potential for better understanding the socioecological impacts of modern and future wildfire systems closely associated with volcanic centres. </p>


Author(s):  
Zhanibek Meiirkhanuly ◽  
Jacek A. Koziel ◽  
Baitong Chen ◽  
Andrzej Białowiec ◽  
Myeongseong Lee ◽  
...  

Environmental impact associated with odor and gaseous emissions from animal manure is one of the challenges for communities, farmers, and regulatory agencies. Microbe-based manure additives treatments are marketed and used by farmers for mitigation of emissions. However, their performance is difficult to assess objectively. Thus, comprehensive, practical, and low-cost treatments are still in demand. We have been advancing such treatments based on physicochemical principles. The objective of this research was to test the effect of the surficial application of a thin layer (¼"; 6.3 mm) of biochar on the mitigation of gaseous emissions (as the percent reduction, % R) from swine manure. Two types of biochar were tested: highly alkaline and porous (HAP) biochar made from corn stover and red oak (RO), both with different pH and morphology. Three 30-day trials were conducted with a layer of HAP and RO (2.0 & 1.65 kg∙m-2, respectively) applied on manure surface, and emissions of ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic compounds (VOCs) were measured. The manure and biochar type and properties had an impact on the mitigation effect and its duration. RO significantly reduced NH3 (19-39%) and p-cresol (66-78%). H2S was mitigated (16~23%), but not significantly for all trials. Significant (66~78%) reductions for p-cresol were observed for all trials. The phenolic VOCs had relatively high % R in most trials but not significantly for all trials. HAP reduced NH3 (4~21%) and H2S (2~22%), but not significantly for all trials. Significant % R for p-cresol (91~97%) and skatole (74~95%) were observed for all trials. The % R for phenol and indole ranged from (60~99%) & (29~94%) but was not significant for all trials. The impact on GHGs, isobutyric acid, and the odor was mixed with some mitigation and generation effects. However, larger-scale experiments are needed to understand how biochar properties and the dose and frequency of application can be optimized to mitigate odor and gaseous emissions from swine manure. The lessons learned can also be applicable to surficial biochar treatment of gaseous emissions from other waste and area sources.


Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Myeongseong Lee ◽  
Hantian Ma ◽  
Zhanibek Meiirkhanuly ◽  
...  

Hydrogen sulfide and ammonia are always a concern in the livestock industries, especially when farmers try to clear their manure storage pits. Agitation of manure can cause dangerously high concentrations of harmful agents such as H2S and NH3 to be emitted into the air. Biochar has the ability to sorb these gases. We hypothesized that applying biochar on top of manure can create an effective barrier to protect farmers and animals from exposure to NH3 and H2S. In this study, two kinds of biochar were tested, highly alkaline, and porous (HAP, pH 9.2) biochar made from corn stover and red oak biochar (RO, pH 7.5). Two scenarios of (6 mm) 0.25” and (12 mm) 0.5” thick layers of biochar treatments were topically applied to the manure and tested on a pilot-scale setup, simulating a deep pit storage. Each setup experienced 3-min of agitation using a transfer pump, and measurements of the concentrations of NH3 and H2S were taken in real-time and measured until the concentration stabilized after the sharp increase in concentration due to agitation. The results were compared with the control in the following 3 situations: 1. The maximum (peak) flux 2. Total emission from the start of agitation until the concentration stabilized, and 3. The total emission during the 3 min of agitation. For NH3, 0.5” HAP biochar treatment significantly (p<0.05) reduced maximum flux by 63.3%, overall total emission by 70%, and total emissions during the 3-min agitation by 85.2%; 0.25” HAP biochar treatment significantly (p<0.05) reduced maximum flux by 75.7%, overall, total emission by 74.5%, and total emissions during the 3-min agitation by 77.8%. 0.5” RO biochar treatment significantly reduced max by 8.8%, overall total emission by 52.9%, and total emission during 3-min agitation by 56.8%; 0.25” RO biochar treatment significantly reduced max by 61.3%, overall total emission by 86.1%, and total emission during 3-min agitation by 62.7%. For H2S, 0.5” HAP biochar treatment reduced the max by 42.5% (p=0.125), overall total emission by 17.9% (p=0.290), and significantly reduced the total emission during 3-min agitation by 70.4%; 0.25” HAP treatment reduced max by 60.6% (p=0.058), and significantly reduced overall and 3-min agitation’s total emission by 64.4% and 66.6%, respectively. 0.5” RO biochar treatment reduce the max flux by 23.6% (p=0.145), and significantly reduced overall and 3-min total emission by 39.3% and 62.4%, respectively; 0.25” RO treatment significantly reduced the max flux by 63%, overall total emission by 84.7%, and total emission during 3-min agitation by 67.4%.


2020 ◽  
Vol 12 (18) ◽  
pp. 7587
Author(s):  
Lavanya Madhavaraj ◽  
Ho-Dong Lim ◽  
Kong-Min Kim ◽  
Dae-Hyuk Kim ◽  
Gui Hwan Han

Manures from livestock industries and farmyards should be managed for land application. Currently, a deep pit or barn system is adopted by many swine farms for manure management, therefore releasing harmful gases and rising the total global emissions of GHGs. This research focuses on the effectiveness of the brown seaweed Sargassum horneri as a masking agent to mitigate odor-generating gaseous pollutants and reduce the emissions of volatile fatty acids (VFAs) from swine manure storage facilities. Using an optimized procedure, we compared the gaseous emissions from two manure storage barns, one containing swine manure masked with S. horneri and the other without masking as a control, over a 30-day period. The results showed that, compared to the control, seaweed masking significantly reduced the sulfide and VFA contents. Furthermore, reductions of 99.48% in H2S, 60 ± 5.21% in NH3 and 74.28 ± 2.14% in gaseous amine emissions were observed within the experimental period. Intriguingly, seaweed masking had beneficial effects, decreasing the total odor content by 97.78 ± 3.15% and increasing the nutrient quality of the manure. S. horneri has great potential as a masking agent in swine manure management to control environmental pollution.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1179 ◽  
Author(s):  
Zhanibek Meiirkhanuly ◽  
Jacek A. Koziel ◽  
Baitong Chen ◽  
Andrzej Białowiec ◽  
Myeongseong Lee ◽  
...  

Environmental impact associated with odor and gaseous emissions from animal manure is one of the challenges for communities, farmers, and regulatory agencies. Microbe-based manure additives treatments are marketed and used by farmers for mitigation of emissions. However, their performance is difficult to assess objectively. Thus, comprehensive, practical, and low-cost treatments are still in demand. We have been advancing such treatments based on physicochemical principles. The objective of this research was to test the effect of the surficial application of a thin layer (¼ inches; 6.3 mm) of biochar on the mitigation of gaseous emissions (as the percent reduction, % R) from swine manure. Two types of biochar were tested: highly alkaline and porous (HAP) biochar made from corn stover and red oak (RO), both with different pH and morphology. Three 30-day trials were conducted with a layer of HAP and RO (2.0 & 1.65 kg∙m−2, respectively) applied on manure surface, and emissions of ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic compounds (VOCs) were measured. The manure and biochar type and properties had an impact on the mitigation effect and its duration. RO significantly reduced NH3 (19–39%) and p-cresol (66–78%). H2S was mitigated (16~23%), but not significantly for all trials. The phenolic VOCs had relatively high % R in most trials but not significantly for all trials. HAP reduced NH3 (4~21%) and H2S (2~22%), but not significantly for all trials. Significant % R for p-cresol (91~97%) and skatole (74~95%) were observed for all trials. The % R for phenol and indole ranged from (60~99%) and (29~94%) but was not significant for all trials. The impact on GHGs, isobutyric acid, and the odor was mixed with some mitigation and generation effects. However, larger-scale experiments are needed to understand how biochar properties and the dose and frequency of application can be optimized to mitigate odor and gaseous emissions from swine manure. The lessons learned can also be applicable to surficial biochar treatment of gaseous emissions from other waste and area sources.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
J. M. Monti ◽  
O. A. Fojón ◽  
J. Hanssen ◽  
R. D. Rivarola

Single electron ionization of helium targets produced by the impact of fast proton beams is investigated. The postversion of the continuum distorted wave-eikonal initial state into a three-body approximation is reformulated, including the dynamic screening produced by the nonionized electron. This dynamic screening is shown to play a main role in the determination of double differential cross-sections. A good agreement is found with predictions obtained employing the prior version of the model, so that post-prior discrepancies are almost eliminated.


2012 ◽  
Vol 8 (1) ◽  
pp. 37-48
Author(s):  
S. Chehaibi ◽  
K. Abrougui ◽  
F. Haouala

The effects of mechanical perforation densities by extracting soil cores through an aerator Vertidrain with a working width of 1.6 m and equipped with hollow tines spaced of 65 mm, were studied on a sandy soil of a grassy sward in the Golf Course El Kantaoui in Sousse (Tunisia). The mechanical aeration was performed at two densities: 250 and 350 holes/m2. The cone penetration resistance and soil water infiltration were measured. These parameters were performed at initial state before aeration (E0) and then on the 10th, 20th and 30th day after aeration. These results showed that perforation density of 350 holes/m2 had a positive effect on the soil by reducing its cone resistance to penetration compared to the initial state (Rp = 14.8 daN/cm2). At 5 cm depth the decrease in resistance to penetration was 34% and 43% on the 10th and 20th day after aeration, respectively. However, on the 30th day after aeration the soil resistance to penetration tended to grow and its value compared to the initial state decreased only by 21 and 26%, respectively, at 5 and 15 cm of depth only by 10% and 9% with 250 holes/m2 density. The soil water infiltration made a good improvement after aeration compared to the initial state. This parameter increased from 4.8 cm/h to 8.3, 10.9 and 13.1 cm/h with 250 holes/m2 density and to 10, 12.9 and 14.8 cm/h with 350 holes/m2 density on the 10th, 20th and 30th day following the aeration.


2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


Author(s):  
Evgeniya Mikhailovna Popova ◽  
Guzel Mukhtarovna Guseinova ◽  
Sergei Borisovich Milov

The deficit of subnational budgets and deceleration capital investments in multiple Russian regions increase the relevance of research aimed at improvement of tax incentivizing practice of the regional investment process. The studies focused on determination of the impact of socioeconomic and institutional factors upon the efficiency of investment tax expenses obtained wide circulation within the foreign scientific literature. The subject of this article is the assessment of sensitivity of the efficiency of regional tax expanses towards investment attractiveness of the types of economic activity carried out by the residents of territories of advanced socioeconomic development, created in the subjects of Far Easter Federal District. The scientific novelty and practical values of this research consists in substantiation of the reasonableness of assessment of investment attractiveness of the types of economic activity that are stimulated by tax incentives. Methodology for assessing investment attractiveness is proposed and tested. The conclusion is made that in case of low investment attractiveness of the type of economic activity, which was planned to support by tax incentives, it is required to conduct and additional analysis to avoid unjustified tax expanses.


Sign in / Sign up

Export Citation Format

Share Document