Understanding Cohesive Law Parameters in Ductile Fracture Initiation and Propagation

Author(s):  
Mariana R. R. Seabra ◽  
José M. A. César de Sá

Continuum Damage Mechanics is successfully employed to describe the behaviour of metallic materials up to the onset of fracture. Nevertheless, on its own, it is not able to accurately trace discrete crack paths. In this contribution, Continuous Damage Mechanics is combined with the XFEM and a Cohesive Law to allow the full simulation of a ductile fracture process. In particular, the Cohesive Law assures an energetically consistent transition from damage to crack for critical damage values lower than one. Moreover, a novel interpretation is given to the parameters of the cohesive law. A fitting method derived directly from the damage model is proposed for these parameters, avoiding additional experimental characterization.

2019 ◽  
Vol 04 (04) ◽  
pp. 1950008
Author(s):  
He Gong ◽  
Changhong Chen ◽  
Yao Yao

A modified damage model is developed for describing ductile fracture of metallic materials by introducing damage variables with respect to porosity. Based on the geometric characteristics of the void deformation process, modified governing equations of void evolution are proposed to reduce the dependence of micro parameters. A transformed variable is introduced to incorporate the porosity into continuum damage mechanics. The numerical predictions are compared with experimental results for AISI-1095, AISI-1090 and AISI-1045 steel.


1990 ◽  
Vol 112 (4) ◽  
pp. 412-421 ◽  
Author(s):  
C. L. Chow ◽  
K. Y. Sze

A recently developed anisotropic model of continuum damage mechanics has been applied successfully to characterize ductile fracture of cracked plates under mode I and mixed mode failures. The damage model is further extended in this investigation to examine its applicability to include notch ductile fracture of thin plates containing a circular hole. Two hole sizes of 16 mm and 24 mm diameters are chosen and the specimen material is aluminum alloy 2024-T3. Fracture loads of the plates are predicted by the damage model and compared satisfactorily with those determined experimentally. This investigation provides an important confirmation that not only the anisotropic model of continuum damage mechanics but also the same failure criterion developed can be effectively employed to characterize both ductile fracture for plates containing an isolated macro-crack or circular hole which would otherwise not be possible using the conventional theory of fracture mechanics. The successful development of the unified approach to characterize ductile failure provides a vital impetus for design engineers in the general application of the theory of continuum damage mechanics to solve practical engineering problems.


2010 ◽  
Vol 07 (02) ◽  
pp. 319-348 ◽  
Author(s):  
SACHIN S. GAUTAM ◽  
P. M. DIXIT

Ductile fracture occurs due to microvoid nucleation, growth and, finally, coalescence into microcracks. These microcracks grow in the presence of stresses leading to fracture. In this work, a criterion based on this phenomenon is used to simulate ductile fracture in a class of steel specimens. A critical value of the damage variable, estimated from experimental results, is used as an indicator of fracture initiation. A continuum damage mechanics model is employed to incorporate the damage in the constitutive relation of the material. A damage growth law based on experimental results is used. It is observed that the damage reaches the critical value first at the center in both the cylindrical and prenotched specimens. Thus, the failure begins at the center and then grows radially outward toward the free surface. The analysis is carried out till the damage reaches the critical value across the whole cross-section, at which point the specimen is considered to have failed.


The creep rupture of circumferentially notched, circular tension bars which are subjected to constant load for long periods at constant temperature is studied both experimentally and by using a time-iterative numerical procedure which describes the formation and growth of creep damage as a field quantity. The procedure models the development of failed or cracked regions of material due to the growth and linkage of grain boundary defects. Close agreement is shown between experimental and theoretical values of the representative rupture stress, of the zones of creep damage and of the development of cracks for circular (Bridgman, Studies in large plastic flow and fracture , New York: McGraw-Hill (1952)) and British Standard notched specimens (B.S. no. 3500 (1969)). The minimum section of the circular notch is shown to be subjected to relatively uniform states of multi-axial stress and damage while the B.S. notch is shown to be subjected to non-uniform stress and damage fields in which single cracks grow through relatively undamaged material. The latter situation is shown to be analogous to the growth of a discrete crack in a lightly damaged continuum. The continuum damage mechanics theory presented here is shown to be capable of accurately predicting these extreme types of behaviour.


2012 ◽  
Vol 498 ◽  
pp. 42-54 ◽  
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.


2008 ◽  
Vol 385-387 ◽  
pp. 893-896
Author(s):  
Kyung Woo Lee ◽  
Hyun Uk Kim ◽  
Sang Wook Park ◽  
Jung Suk Lee ◽  
Kwang Ho Kim ◽  
...  

This study focused on the determination of fracture toughness by instrumented indentation technique. A theoretical model to estimate the fracture toughness of ductile materials is proposed and used to verify those results. Modeling of IIT to evaluate fracture toughness is based on two main ideas; the energy input up to characteristic fracture initiation point during indentation was correlated with material’s resistance to crack initiation and growth, and this characteristic fracture initiation point was determined by concepts of continuum damage mechanics. The estimated fracture toughness values obtained from the indentation technique showed good agreement with those from conventional fracture toughness tests based on CTOD. In addition, we confirmed that the proposed model can be also applied in the brittle material through modification of void volume fraction.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
M. Ganjiani

In this paper, an elastoplastic-damage constitutive model is presented. The formulation is cast within the framework of continuum damage mechanics (CDM) by means of the internal variable theory of thermodynamics. The damage is assumed as a tensor type variable and its evolution is developed based on the energy equivalence hypothesis. In order to discriminate the plastic and damage deformation, two surfaces named as plastic and damage are introduced. The damage surface has been developed so that it can model the nonlinear variation of damage. The details of the model besides its implicit integration algorithm are presented. The model is implemented as a user-defined subroutine user-defined material (UMAT) in the abaqus/standard finite element program for numerical simulation purposes. In the regard of investigating the capability of model, the shear and tensile tests are experimentally conducted, and corresponding results are compared with those predicted numerically. These comparisons are also accomplished for several experiments available in the literature. Satisfactory agreement between experiments and numerical predictions provided by the model implies the capability of the model to predict the plastic deformation as well as damage evolution in the materials.


2015 ◽  
Vol 8 (1) ◽  
pp. 49-65
Author(s):  
J. J. C. Pituba ◽  
W. M. Pereira Júnior

This work deals with an improvement of an anisotropic damage model in order to analyze reinforced concrete structures submitted to reversal loading. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous media following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. However, the original model is not capable to simulate the influence of the previous damage processes in compression regimes. In order to avoid this problem, some conditions are introduced to simulate the damage unilateral effect. It has noted that the damage model is agreement with to micromechanical theory conditions when dealing to unilateral effect in concrete material. Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. These numerical applications show the good performance of the model and its potentialities to simulate practical problems in structural engineering.


Sign in / Sign up

Export Citation Format

Share Document