Tectonic Events, Sequence Stratigraphy and Prediction of Petroleum Play Elements in the Cretaceous and Tertiary of the Northern Carnarvon Basin, North West Shelf, Australia: ABSTRACT

AAPG Bulletin ◽  
1996 ◽  
Vol 80 ◽  
Author(s):  
K. K. Romine, J. D. Durrant
1997 ◽  
Vol 37 (1) ◽  
pp. 429 ◽  
Author(s):  
D. Jablonski

Application of sequence stratigraphy to well and seismic data has resulted in major revisions to the stratigraphic subdivision and understanding of the hydrocarbon system in the Northern Carnarvon Basin of Australia.A sequence stratigraphic nomenclature which integrates the biostratigraphic control and sequence terminology has been developed. This has proven to be an invaluable tool in enabling effective communication between geologists, biostratigraphers, and seismic interpreters. This nomenclature reduces the need to refer to absolute time scales and Epoch or Stage names, all of which are subject to change. The revised subdivision and new terminology can be used to reliably correlate across wide areas on the North West Shelf and possibly beyond.Six first and second order megasequences are recognised within the Triassic to Lower Cretaceous succession. These megasequences are mostly bounded by transgressive surfaces that are expressed on well logs as abrupt facies changes and on seismic as major downlap surfaces, indicating significant acceleration in subsidence rates and an increase in accommodation space in the basin. Each megasequence consists of an initial transgressive section of mainly fine-grained clastics overlain by a regressive and usually extensive succession of coarse-grained deposits. Recognition of the significance of these megasequence boundaries, and the stages of extension, has resulted in a vastly improved understanding of surfaces, some of which have previously been mis-interpreted as 'break-up unconformities'. Two distinct stratigraphic events, a Callovian transgression and an Oxfordian Iowstand, have been recognised as separate megasequence boundaries, which has a significant impact on the prospectivity of the Northern Carnarvon Basin.


1997 ◽  
Vol 37 (1) ◽  
pp. 315 ◽  
Author(s):  
K. K. Romine ◽  
J. M. Durrant ◽  
D. L. Cathro ◽  
G. Bernardel

A regional tectono-stratigraphic framework has been developed for the Cretaceous and Tertiary section in the Northern Carnarvon Basin. This framework places traditional observations in a new context and provides a predictive tool for determining the temporal occurrence and spatial distribution of the lithofacies play elements, that iss reservoir, source and seal.Two new, potential petroleum systems have been identified within the Barremian Muderong Shale and Albian Gearle Siltstone. These potential source rocks could be mature or maturing along a trend that parallels the Alpha Arch and Rankin Platform, and within the Exinouth Sub-basin.A favourable combination of reservoir and seal can be predicted for the early regressive part of the Creta- ceous-Tertiary basin phase (Campanian-Palaeocene). Lowstand and transgressive (within incised valleys) reservoirs are more likely to be isolated and encased in sealing shales, similar to lowstand reservoir facies deposited during the transgressive part of the basin phase, for example, the M. australis sand play.The basin analysis revealed the important role played by pre-existing Proterozoic-Palaeozoic lineaments during extension, and the subsequent impact on play elements, in particular, the distribution of reservoir, fluid migration, and trap development. During extension, the north-trending lineaments influenced the compart mentalisation of the Northern Carnarvon Basin into discrete depocentres. Relay ramp-style accommodation zones developed, linking the sub-basins, and acting as pathways for sediment input into the depocentres and, later in the basin's history, as probable hydrocarbon migration pathways. The relay accommodation zones are a dynamic part of the basin architecture, acting as a focal point for response to intraplate stresses and the creation, modification and destruction of traps and migration pathways.


2021 ◽  
Vol 61 (2) ◽  
pp. 600
Author(s):  
Michael Curtis ◽  
Simon Holford ◽  
Mark Bunch ◽  
Nick Schofield

The Northern Carnarvon Basin (NCB) forms part of the North West Australian margin. This ‘volcanic’ rifted margin formed as Greater India rifted from the Australian continent through the Jurassic, culminating in breakup in the Early Cretaceous. Late Jurassic to Early Cretaceous syn-rift intrusive magmatism spans 45000km2 of the western Exmouth Plateau and the Exmouth Sub-basin; however, there is little evidence of associated contemporaneous volcanic activity, with isolated late Jurassic volcanic centres present in the central Exmouth Sub-basin. The scarcity of observed volcanic centres is not typical of the extrusive components expected in such igneous provinces, where intrusive:extrusive ratios are typically 2–3:1. To address this, we have investigated the processes that led to the preservation of a volcanic centre near the Pyrenees field and the Toro Volcanic Centre (TVC). The volcanic centre near the Pyrenees field appears to have been preserved from erosion associated with the basin-wide KV unconformity by fault-related downthrow. However, the TVC, which was also affected by faulting, is located closer to the focus of regional early Cretaceous uplift along the Ningaloo Arch to the south and was partly eroded. With erosion of up to 2.6km estimated across the Ningaloo Arch, which, in places, removed all Jurassic strata, we propose that the ‘Exmouth Volcanic Province’ was originally much larger, extending south from the TVC into the southern Exmouth Sub-basin prior to regional uplift and erosion, accounting for the ‘missing’ volume of extrusive igneous material in the NCB.


2017 ◽  
Vol 57 (1) ◽  
pp. 263 ◽  
Author(s):  
Roisin McGee ◽  
Jeff Goodall ◽  
Stephen Molyneux

The Lower to Middle Triassic mixed carbonate–clastic system in the Northern Carnarvon Basin is poorly understood relative to the stratigraphically younger Jurassic play systems. Few well penetrations and a lack of quality seismic data have deterred exploration of this interval for many years. In recent times, the Lower to Middle Triassic source potential has been comprehensively de-risked within the Roebuck Basin, with subsequent implications across the entire North West Shelf of Australia, opening up the possibility of an entirely new regional play fairway. This paper focuses on the Candace Terrace, on the southern flank of the Carnarvon Basin, where seismic observations and interpretations of Lower to Middle Triassic submarine canyon systems have been made. The stratigraphic elements of this play interval can now be more clearly observed with the aid of 3D seismic data. Amplitude extractions show the internal geometries of these highly erosive systems are sinuous, compensating flows. The aims of this paper are to postulate the stratigraphy of the Lower to Middle Triassic on the Candace Terrace, highlight the tectonic cause of the canyon systems and discuss the prospectivity of the observed turbidite features.


2002 ◽  
Vol 42 (1) ◽  
pp. 287 ◽  
Author(s):  
L.L. Pryer ◽  
K.K. Romine ◽  
T.S. Loutit ◽  
R.G. Barnes

The Barrow and Dampier Sub-basins of the Northern Carnarvon Basin developed by repeated reactivation of long-lived basement structures during Palaeozoic and Mesozoic tectonism. Inherited basement fabric specific to the terranes and mobile belts in the region comprise northwest, northeast, and north–south-trending Archaean and Proterozoic structures. Reactivation of these structures controlled the shape of the sub-basin depocentres and basement topography, and determined the orientation and style of structures in the sediments.The Lewis Trough is localised over a reactivated NEtrending former strike-slip zone, the North West Shelf (NWS) Megashear. The inboard Dampier Sub-basin reflects the influence of the fabric of the underlying Pilbara Craton. Proterozoic mobile belts underlie the Barrow Sub-basin where basement fabric is dominated by two structural trends, NE-trending Megashear structures offset sinistrally by NS-trending Pinjarra structures.The present-day geometry and basement topography of the basins is the result of accumulated deformation produced by three main tectonic phases. Regional NESW extension in the Devonian produced sinistral strikeslip on NE-trending Megashear structures. Large Devonian-Carboniferous pull-apart basins were introduced in the Barrow Sub-basin where Megashear structures stepped to the left and are responsible for the major structural differences between the Barrow and Dampier Sub-basins. Northwest extension in the Late Carboniferous to Early Permian marks the main extensional phase with extreme crustal attenuation. The majority of the Northern Carnarvon basin sediments were deposited during this extensional basin phase and the subsequent Triassic sag phase. Jurassic extension reactivated Permian faults during renewed NW extension. A change in extension direction occurred prior to Cretaceous sea floor spreading, manifest in basement block rotation concentrated in the Tithonian. This event changed the shape and size of basin compartments and altered fluid migration pathways.The currently mapped structural trends, compartment size and shape of the Barrow and Dampier Sub-basins of the Northern Carnarvon Basin reflect the “character” of the basement beneath and surrounding each of the subbasins.Basement character is defined by the composition, lithology, structure, grain, fabric, rheology and regolith of each basement terrane beneath or surrounding the target basins. Basement character can be discriminated and mapped with mineral exploration methods that use non-seismic data such as gravity, magnetics and bathymetry, and then calibrated with available seismic and well datasets. A range of remote sensing and geophysical datasets were systematically calibrated, integrated and interpreted starting at a scale of about 1:1.5 million (covering much of Western Australia) and progressing to scales of about 1:250,000 in the sub-basins. The interpretation produced a new view of the basement geology of the region and its influence on basin architecture and fill history. The bottom-up or basement-first interpretation process complements the more traditional top-down seismic and well-driven exploration methods, providing a consistent map-based regional structural model that constrains structural interpretation of seismic data.The combination of non-seismic and seismic data provides a powerful tool for mapping basement architecture (SEEBASE™: Structurally Enhanced view of Economic Basement); basement-involved faults (trap type and size); intra-sedimentary geology (igneous bodies, basement-detached faults, basin floor fans); primary fluid focussing and migration pathways and paleo-river drainage patterns, sediment composition and lithology.


1989 ◽  
Vol 29 (1) ◽  
pp. 529 ◽  
Author(s):  
A.E. Cockbain

The region of the North West Shelf dealt with in this paper is underlain by three of the four basins which make up the Westralian Superbasin. The Bonaparte Basin lies outside the scope of this paper; the other basins are the Browse Basin, the offshore Canning Basin, here named the Western Canning Basin, and the offshore Carnarvon Basin, here called the Northern Carnarvon Basin. Sediments belonging to ten depositional sequences (Pz5, Mzl to Mz5, and Czl to Cz4) are present in the basins, the oldest being of Late Carboniferous and Permian age (Pz5).Deposition commenced in rift (interior fracture) basins under fluvial/deltaic conditions in the Late Permian/Early Triassic (Mzl), when the North West Shelf was part of Gondwana. Continental breakup took place in the Middle Jurassic (breakup unconformity between Mz2 and Mz3), and marine conditions prevailed over the Westralian Superbasin thereafter, with deposition taking place in a marginal sag setting. Siliciclastic sediments gave place to carbonates in the Late Cretaceous (Mz5) as the Indian Ocean grew larger.Parts of the area have been under permit since 1946, and to date some 227 exploration wells have been drilled. The most intensive exploration has taken place in the Northern Carnarvon Basin (191 wells), followed by the Browse Basin (20 wells), and Western Canning Basin (16 wells). Thirty- four economic and potentially economic discoveries have been made. The main target reservoirs are Triassic, Jurassic and Cretaceous, and the regional seals are Triassic and Cretaceous. The fields are of two types: pre- breakup unconformity (mainly tilted horst blocks), and post- breakup unconformity (usually four- way dip closures). Of the five producing fields, the North Rankin Gas Field is a pre- breakup field, while the four oil fields (Barrow, Harriet, South Pepper and North Herald) are all post- breakup.


2021 ◽  
Author(s):  
Jianfeng Yao ◽  
Xiang Li ◽  
Kai Zhao ◽  
Hui Zhang

Abstract Northern Carnarvon Basin is located in North West Shelf of Western Australia. The basin has over 10km sediments and owns both oil-prone and gas-prone sediments and is the current largest oil and gas producing basin in Australia. A geological section through this basin is shown in Figure 1, the complex geological settings from shallow to deep leads to significant processing challenges. In the vintage processing, the seismic image at reservoir level is deteriorated due to the presence of following geological complexities: 1) rugose water bottom, 2) shallow frequent canyons or channel systems, 3) shallow spatial-variant Tertiary carbonates, and 4) shallow gas chimneys and other geo-bodies. These complex overburdens plus limited small-angle coverage of primary reflections from narrow azimuth (NAZ) streamer surveys make it very difficult for ray-based reflection tomography to resolve the shallow velocity. As a result, the target image suffers from large well mis-ties, low signal-to-noise ratio (S/N) and severe event undulations. In addition, shallow fast-velocity layers cause severe illumination issues for deep targets which are compounded by limited offsets of NAZ surveys. Furthermore, localised absorption effects from gas pockets lead to dimming amplitudes for events beneath them. To deal with these issues, we propose to use time-lag full wave-form inversion (TLFWI) to resolve the velocity of complex overburdens and least-squares Q prestack depth migration (LS Q-PSDM) to compensate for illumination issues and absorption effects for the latest reprocessing. In the following sections, application procedure and results of these two technologies will be discussed. Seismic inversion was also conducted to assist the processing and analysis of the final result.


Sign in / Sign up

Export Citation Format

Share Document