Groundwater salinity and the effects of produced water disposal in the Lost Hills–Belridge oil fields, Kern County, California

2019 ◽  
Vol 26 (3) ◽  
pp. 73-96 ◽  
Author(s):  
Janice M. Gillespie ◽  
Tracy A. Davis ◽  
Michael J. Stephens ◽  
Lyndsay B. Ball ◽  
Matthew K. Landon
2018 ◽  
Vol 27 (2) ◽  
pp. 731-746 ◽  
Author(s):  
Michael J. Stephens ◽  
David H. Shimabukuro ◽  
Janice M. Gillespie ◽  
Will Chang

2018 ◽  
Author(s):  
Valerie Petela ◽  
◽  
Charuleka Varadharajan ◽  
Charuleka Varadharajan ◽  
Preston D. Jordan ◽  
...  

2010 ◽  
Author(s):  
Mool Chand Nihalani ◽  
S. Verma ◽  
J. Kumar ◽  
H. Dubey ◽  
Nripendra Kumar Bharali ◽  
...  

Author(s):  
S. G. Udeagbara ◽  
S. O. Isehunwa ◽  
N. U. Okereke ◽  
I. U. Oguamah

Abstract Produced water (PW) from petroleum reservoirs often contains heavy metals and other contaminants that are harmful to the environment. Most of the commonly used treatment techniques have been reported to be ineffective in reducing some of the contaminants’ concentrations to recommended disposal levels. This study evaluated the effectiveness of four selected bio-adsorbents combined for treating PW from Niger Delta oil fields. In this study, orange peels (I), banana peels (II), sponge gourd (Luffa cylindrica) (III) and palm kernel fibers (IV) were washed with distilled water, sun-dried (24 h) and dried in the oven at 105 ± 5 °C (3 h, I and II), 150 °C (30 min, III) and 80 °C (3 h, IV). They were ground into powder, sieved (150 μ, Group A) and (300 μ, Group B), washed with 0.4 mol/L HNO3, filtered and rinsed with distilled water. Samples of PW were obtained from fields R, X, and Y in the Niger Delta and analysed for heavy metals using an atomic absorption spectrophotometer (AAS). Samples were treated in adsorption column over 6 h using the adsorbents simultaneously. Treated samples were analysed with AAS and characterised. Adsorption of heavy metals were assessed using Langmuir and Freundlich models. Data were analysed using regression and other statistical methods. For the 150 μ size of sample R, the percentage reductions for the metal concentrations (Pb, Ni, Cd, Cu, Fe, Mg, Cr, Zn, Mn, Ca, Ar, B, Sn and Ba) were found to be 100%, 52.7%, 100%, 100%, 85.87%, 19.48%, 100%, 92.8%, 17.74%, 98.86%, 22.32%, 29.56%, 78.06% and 44.74%, respectively, while the reduction in 300 μ size were 1.52%, 97.2%, 71.4%, 17.1%, 43.8%, 45.6%, 7.04%, 89.6%, 35.4%, 99.6%, 0.0001%, 1.19%, 14.19% and 0.002%, respectively. The finer adsorbents were more effective. Similar results were obtained for PW samples from the other fields. Produced water from Niger Delta oil fields was effectively treated of contaminants using four selected bio-adsorbents mixed simultaneously.


2014 ◽  
Vol 556-562 ◽  
pp. 867-871
Author(s):  
Qiu Shi Zhao

It is significative to study sewage treatment process in low permeable oil fields. It could enhance the oil recovery. The water quality characteristics and oil/water separation characteristics were researched during different period process by GC-MS. It shows that there are about 108 kinds of organic matters, including 45 kinds of aliphatic hydrocarbon, 7 kinds of aine, 5 kinds of sulfocompound and 9 kinds of hexacyclic compounds, such as Benzene, phenol, naphthalene and anthracene. The percent of oil droplets which size was less than 10μm is 57.3%, compared to 91.6% which size was more than 50μm. It is difficult to separate the water and oil. The remaining oil was emulsified oil. The process was hard to decrease COD, and some pollutants were existed in water, such as Arsenic, Selenium, Mercury ,Cadmium and Cr6+. It is further proposed to optimize and develop this process to removal oil and suspended solids.


2004 ◽  
Author(s):  
A.C. Sluijterman ◽  
Y. Al-Lawati ◽  
S. Al-Asmi ◽  
P.H.J. Verbeek ◽  
M.A.S. Schaapveld ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gabriela Feix Pereira ◽  
Harry Luiz Pilz-Junior ◽  
Gertrudes Corção

AbstractExtreme conditions and the availability of determinate substrates in oil fields promote the growth of a specific microbiome. Sulfate-reducing bacteria (SRB) and acid-producing bacteria (APB) are usually found in these places and can harm important processes due to increases in corrosion rates, biofouling and reservoir biosouring. Biocides such as glutaraldehyde, dibromo-nitrilopropionamide (DBNPA), tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and alkyl dimethyl benzyl ammonium chloride (ADBAC) are commonly used in oil fields to mitigate uncontrolled microbial growth. The aim of this work was to evaluate the differences among microbiome compositions and their resistance to standard biocides in four different Brazilian produced water samples, two from a Southeast Brazil offshore oil field and two from different Northeast Brazil onshore oil fields. Microbiome evaluations were carried out through 16S rRNA amplicon sequencing. To evaluate the biocidal resistance, the Minimum Inhibitory Concentration (MIC) of the standard biocides were analyzed using enriched consortia of SRB and APB from the produced water samples. The data showed important differences in terms of taxonomy but similar functional characterization, indicating the high diversity of the microbiomes. The APB and SRB consortia demonstrated varying resistance levels against the biocides. These results will help to customize biocidal treatments in oil fields.


Sign in / Sign up

Export Citation Format

Share Document