scholarly journals Detection of trees features from a forestry area using airborne LiDAR data

2020 ◽  
Vol 13 (1) ◽  
pp. 225-236
Author(s):  
Ioana VIZIREANU ◽  
Andreea CALCAN ◽  
Georgiana GRIGORAS ◽  
Dan RADUCANU

The impact of anthropogenic actions on the environment and climate has recently increased the need to map the afforested areas. In this context, the three-dimensional (3D) measurement of vegetation structures plays an important role in having an efficient forest inventory and management. Nowadays, the airborne LiDAR (Light Detection And Ranging) system offers high horizontal resolution as well as vertical dimension information, making it possible to estimate both three-dimensional characteristics of individual trees and to identify the distribution of forest resources in the region. This study aims to present a processing approach for the determination of each tree’s position (X and Y location, as well as tree height) and its dimensions (crown diameter, area and volume) using geometrically accurate 3D point clouds (data sets were collected in a forested area in Argeș County, Romania). To a better understanding of the forest features and to explore the potential of remote sensing for such analysis, it was further exploited Digital Terrain Model (DTM), Digital Surface Model (DSM), and Canopy Height Model (CHM) derivation.

2018 ◽  
Vol 27 (2) ◽  
pp. e005 ◽  
Author(s):  
Ângela M. K. Hentz ◽  
Carlos A. Silva ◽  
Ana P. Dalla Corte ◽  
Sylvio P. Netto ◽  
Michael P. Strager ◽  
...  

Aim of study: In this study we applied 3D point clouds generated by images obtained from an Unmanned Aerial Vehicle (UAV) to evaluate the uniformity of young forest stands.Area of study: Two commercial forest stands were selected, with two plots each. The forest species studied were Eucalyptus spp. and Pinus taeda L. and the trees had an age of 1.5 years.Material and methods: The individual trees were detected based on watershed segmentation and local maxima, using the spectral values stored in the point cloud. After the tree detection, the heights were calculated using two approaches, in the first one using the Digital Surface Model (DSM) and a Digital Terrain Model, and in the second using only the DSM. We used the UAV-derived heights to estimate an uniformity index.Main results: The trees were detected with a maximum 6% of error. However, the height was underestimated in all cases, in an average of 1 and 0.7 m for Pinus and Eucalyptus stands. We proposed to use the models built herein to estimate tree height, but the regression models did not explain the variably within the data satisfactorily. Therefore, the uniformity index calculated using the direct UAV-height values presented results close to the field inventory, reaching better results when using the second height approach (error ranging 2.8-7.8%).Research highlights: The uniformity index using the UAV-derived height from the proposed methods was close to the values obtained in field. We noted the potential for using UAV imagery in forest monitoring.


2019 ◽  
Vol 11 (10) ◽  
pp. 1204 ◽  
Author(s):  
Yue Pan ◽  
Yiqing Dong ◽  
Dalei Wang ◽  
Airong Chen ◽  
Zhen Ye

Three-dimensional (3D) digital technology is essential to the maintenance and monitoring of cultural heritage sites. In the field of bridge engineering, 3D models generated from point clouds of existing bridges is drawing increasing attention. Currently, the widespread use of the unmanned aerial vehicle (UAV) provides a practical solution for generating 3D point clouds as well as models, which can drastically reduce the manual effort and cost involved. In this study, we present a semi-automated framework for generating structural surface models of heritage bridges. To be specific, we propose to tackle this challenge via a novel top-down method for segmenting main bridge components, combined with rule-based classification, to produce labeled 3D models from UAV photogrammetric point clouds. The point clouds of the heritage bridge are generated from the captured UAV images through the structure-from-motion workflow. A segmentation method is developed based on the supervoxel structure and global graph optimization, which can effectively separate bridge components based on geometric features. Then, recognition by the use of a classification tree and bridge geometry is utilized to recognize different structural elements from the obtained segments. Finally, surface modeling is conducted to generate surface models of the recognized elements. Experiments using two bridges in China demonstrate the potential of the presented structural model reconstruction method using UAV photogrammetry and point cloud processing in 3D digital documentation of heritage bridges. By using given markers, the reconstruction error of point clouds can be as small as 0.4%. Moreover, the precision and recall of segmentation results using testing date are better than 0.8, and a recognition accuracy better than 0.8 is achieved.


2021 ◽  
Vol 7 (2) ◽  
pp. 57-74
Author(s):  
Lamyaa Gamal EL-Deen Taha ◽  
A. I. Ramzi ◽  
A. Syarawi ◽  
A. Bekheet

Until recently, the most highly accurate digital surface models were obtained from airborne lidar. With the development of a new generation of large format digital photogrammetric aerial camera, a fully digital photogrammetric workflow became possible. Digital airborne images are sources for elevation extraction and orthophoto generation. This research concerned with the generation of digital surface models and orthophotos as applications from high-resolution images.  In this research, the following steps were performed. A Benchmark data of LIDAR and digital aerial camera have been used.  Firstly, image orientation, AT have been performed. Then the automatic digital surface model DSM generation has been produced from the digital aerial camera. Thirdly true digital ortho has been generated from the digital aerial camera also orthoimage will be generated using LIDAR digital elevation model (DSM). Leica Photogrammetric Suite (LPS) module of Erdsa Imagine 2014 software was utilized for processing. Then the resulted orthoimages from both techniques were mosaicked. The results show that automatic digital surface model DSM that been produced from digital aerial camera method has very high dense photogrammetric 3D point clouds compared to the LIDAR 3D point clouds. It was found that the true orthoimage produced from the second approach is better than the true orthoimage produced from the first approach. The five approaches were tested for classification of the best-orthorectified image mosaic using subpixel based (neural network) and pixel-based ( minimum distance and maximum likelihood).Multicues were extracted such as texture(entropy-mean),Digital elevation model, Digital surface model ,normalized digital surface model (nDSM) and intensity image. The contributions of the individual cues used in the classification have been evaluated. It was found that the best cue integration is intensity (pan) +nDSM+ entropy followed by intensity (pan) +nDSM+mean then intensity image +mean+ entropy after that DSM )image and two texture measures (mean and entropy) followed by the colour image. The integration with height data increases the accuracy. Also, it was found that the integration with entropy texture increases the accuracy. Resulted in fifteen cases of classification it was found that maximum likelihood classifier is the best followed by minimum distance then neural network classifier. We attribute this to the fine resolution of the digital camera image. Subpixel classifier (neural network) is not suitable for classifying aerial digital camera images. 


Author(s):  
M. Bouziani ◽  
M. Amraoui ◽  
S. Kellouch

Abstract. The purpose of this study is to assess the potential of drone airborne LiDAR technology in Morocco in comparison with drone photogrammetry. The cost and complexity of the equipment which includes a laser scanner, an inertial measurement unit, a positioning system and a platform are among the causes limiting its use. Furthermore, this study was motivated by the following reasons: (1) Limited number of studies in Morocco on drone-based LiDAR technology applications, (2) Lack of study on the parameters that influence the quality of drone-based LiDAR surveys as well as on the evaluation of the accuracy of derived products. In this study, the evaluation of LiDAR technology was carried out by an analysis of the geometric accuracy of the 3D products generated: Digital Terrain Model (DTM), Digital Surface Model (DSM) and Digital Canopy Model (DCM). We conduct a comparison with the products generated by drone photogrammetry and GNSS surveys. Several tests were carried out to analyse the parameters that influence the mission results namely height, overlap, drone speed and laser pulse frequency. After data collection, the processing phase was carried out. It includes: the cleaning, the consolidation then the classification of point clouds and the generation of the various digital models. This project also made it possible to propose and validate a workflow for the processing, the classification of point clouds and the generation of 3D digital products derived from the processing of LiDAR data acquired by drone.


Author(s):  
E. Mugner ◽  
N. Seube

Abstract. A method to remove random errors from 3D point clouds is proposed. It is based on the estimation of a local geometric descriptor of each point. For mobile mapping LiDAR and airborne LiDAR, a combined standard mesurement uncertainty of the LiDAR system may supplement a geometric approach. Our method can be applied to any point cloud, acquired by a fixed, a mobile or an airborne LiDAR system. We present the principle of the method and some results from various LiDAR system mounted on UAVs. A comparison of a low-cost LiDAR system and a high-grade LiDAR system is performed on the same area, showing the benefits of applying our denoising algorithm to UAV LiDAR data. We also present the impact of denoising as a pre-processing tool for ground classification applications. Finaly, we also show some application of our denoising algorithm to dense point clouds produced by a photogrammetry software.


Drones ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 68 ◽  
Author(s):  
Mohammadi ◽  
Watson ◽  
Wood

Aerial data collection is well known as an efficient method to study the impact following extreme events. While datasets predominately include images for post-disaster remote sensing analyses, images alone cannot provide detailed geometric information due to a lack of depth or the complexity required to extract geometric details. However, geometric and color information can easily be mined from three-dimensional (3D) point clouds. Scene classification is commonly studied within the field of machine learning, where a workflow follows a pipeline operation to compute a series of engineered features for each point and then points are classified based on these features using a learning algorithm. However, these workflows cannot be directly applied to an aerial 3D point cloud due to a large number of points, density variation, and object appearance. In this study, the point cloud datasets are transferred into a volumetric grid model to be used in the training and testing of 3D fully convolutional network models. The goal of these models is to semantically segment two areas that sustained damage after Hurricane Harvey, which occurred in 2017, into six classes, including damaged structures, undamaged structures, debris, roadways, terrain, and vehicles. These classes are selected to understand the distribution and intensity of the damage. The point clouds consist of two distinct areas assembled using aerial Structure-from-Motion from a camera mounted on an unmanned aerial system. The two datasets contain approximately 5000 and 8000 unique instances, and the developed methods are assessed quantitatively using precision, accuracy, recall, and intersection over union metrics.


Author(s):  
G. Mandlburger ◽  
K. Wenzel ◽  
A. Spitzer ◽  
N. Haala ◽  
P. Glira ◽  
...  

Modern airborne sensors integrate laser scanners and digital cameras for capturing topographic data at high spatial resolution. The capability of penetrating vegetation through small openings in the foliage and the high ranging precision in the cm range have made airborne LiDAR the prime terrain acquisition technique. In the recent years dense image matching evolved rapidly and outperforms laser scanning meanwhile in terms of the achievable spatial resolution of the derived surface models. In our contribution we analyze the inherent properties and review the typical processing chains of both acquisition techniques. In addition, we present potential synergies of jointly processing image and laser data with emphasis on sensor orientation and point cloud fusion for digital surface model derivation. Test data were concurrently acquired with the <i>RIEGL</i> LMS-Q1560 sensor over the city of Melk, Austria, in January 2016 and served as basis for testing innovative processing strategies. We demonstrate that (i) systematic effects in the resulting scanned and matched 3D point clouds can be minimized based on a hybrid orientation procedure, (ii) systematic differences of the individual point clouds are observable at penetrable, vegetated surfaces due to the different measurement principles, and (iii) improved digital surface models can be derived combining the higher density of the matching point cloud and the higher reliability of LiDAR point clouds, especially in the narrow alleys and courtyards of the study site, a medieval city.


Author(s):  
G. J. Grenzdörffer

The accurate determination of the height of agricultural crops helps to predict yield, biomass etc. These relationships are of great importance not only for crop production but also in grassland management, because the available biomass and food quality are valuable information. However there is no cost efficient and automatic system for the determination of the crop height available. 3D-point clouds generated from high resolution UAS imagery offer a new alternative. Two different approaches for crop height determination are presented. The "difference method" were the canopy height is determined by taking the difference between a current UAS-surface model and an existing digital terrain model (DTM) is the most suited and most accurate method. In situ measurements, vegetation indices and yield observations correlate well with the determined UAS crop heights.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wuming Zhang ◽  
Shangshu Cai ◽  
Xinlian Liang ◽  
Jie Shao ◽  
Ronghai Hu ◽  
...  

Abstract Background The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree crown) in LiDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory parameters. Methods We develop an algorithm based on cloth simulation for constructing a pit-free CHM. Results The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-free CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms, as evidenced by the lowest average root mean square error (0.4981 m) between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best performance overall in terms of maximum tree height estimation (average bias = 0.9674 m). Conclusion The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.


2021 ◽  
Vol 13 (13) ◽  
pp. 2485
Author(s):  
Yi-Chun Lin ◽  
Raja Manish ◽  
Darcy Bullock ◽  
Ayman Habib

Maintenance of roadside ditches is important to avoid localized flooding and premature failure of pavements. Scheduling effective preventative maintenance requires a reasonably detailed mapping of the ditch profile to identify areas in need of excavation to remove long-term sediment accumulation. This study utilizes high-resolution, high-quality point clouds collected by mobile LiDAR mapping systems (MLMS) for mapping roadside ditches and performing hydrological analyses. The performance of alternative MLMS units, including an unmanned aerial vehicle, an unmanned ground vehicle, a portable backpack system along with its vehicle-mounted version, a medium-grade wheel-based system, and a high-grade wheel-based system, is evaluated. Point clouds from all the MLMS units are in agreement within the ±3 cm range for solid surfaces and ±7 cm range for vegetated areas along the vertical direction. The portable backpack system that could be carried by a surveyor or mounted on a vehicle is found to be the most cost-effective method for mapping roadside ditches, followed by the medium-grade wheel-based system. Furthermore, a framework for ditch line characterization is proposed and tested using datasets acquired by the medium-grade wheel-based and vehicle-mounted portable systems over a state highway. An existing ground-filtering approach—cloth simulation—is modified to handle variations in point density of mobile LiDAR data. Hydrological analyses, including flow direction and flow accumulation, are applied to extract the drainage network from the digital terrain model (DTM). Cross-sectional/longitudinal profiles of the ditch are automatically extracted from the LiDAR data and visualized in 3D point clouds and 2D images. The slope derived from the LiDAR data turned out to be very close to the highway cross slope design standards of 2% on driving lanes, 4% on shoulders, and a 6-by-1 slope for ditch lines.


Sign in / Sign up

Export Citation Format

Share Document