scholarly journals Modelling surface runoff and soil erosion for Yen Bai Province, Vietnam, using the Soil and Water Assessment Tool (SWAT)

2016 ◽  
Vol 8 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Hong Quang Nguyen ◽  
Thi Thu Hang Le ◽  
Thi Thanh Nga Pham ◽  
Martin Kappas

Applications of the Soil and Water Assessment Tool (SWAT) are common. However, few attempts have focused on the tropics like in the Yen Bai province, Vietnam. Annual water-induced soil erosion (WSE) rates and surface runoff (SR) were estimated. The Nam Kim and Ngoi Hut watersheds were calibrated with accepted agreement between simulated and observed discharge. Correlations between precipitation, land covers, surface runoff and WSE were indicated. Although the estimated average WSE 4.1 t ha−1 year−1 (t ha−1 y−1) was moderate, some steep-bare areas were suffering serious soil loss of 26 t ha−1 y−1 and 15% of the province was calculated at the rate of 8.5 t ha−1 y−1. We found that the changes in WSE significantly correlated with land use changes. As calibrated SR matched closely with the measured data, we recommend SWAT applications for long-term soil erosion assessments in the tropics. Những ứng dụng của mô hình công cụ đánh giá đất và nước (SWAT) đã được sử dụng phổ biến. Tuy nhiên có rất ít nghiên cứu tập trung vào khu vực nhiệt đới như tỉnh Yên Bái của Việt Nam. Trong nghiên cứu này, giá trị trung bình năm (2001-2012) nước chảy bề mặt (NCM) và xói mòn đất do nước (XM) đã được đánh giá trên cơ sở mô hình SWAT. Các thông số thủy văn của hai lưu vực sông là Nậm Kim và Ngòi Hút được tính toán và kiểm nghiệm với sự trùng hợp tương đối tốt giữa kết quả mô hình và số liệu thực đo. Mối liên hệ giữa lượng mưa, phủ bề mặt, NCM và XM cũng được phân tích và trình bầy chi tiết. Mặc dù giá trị XM năm được ước lượng ở mức trung bình cho toàn Tỉnh (4,1 tấn/ha/năm) nhưng ở một số khu vực nơi có độ dốc lớn và phủ mặt ít lại có lượng XM năm ở mức cao, 26 tấn/ha/năm và 15% tổng diện tích của Tỉnh có giá trị XM là 8,5 tấn/ha/năn. Kết quả nghiên cứu cho thấy sự liên hệ mật thiết giữa sự thay đổi phủ mặt tới giá trị XM. Trên cơ sở kết quả kiểm nghiệm mô hình khả quan, chúng tôi đề xuất sử dụng mô hình SWAT để đánh giá XM trong thời gian dài cho vùng nhiệt đới.

2015 ◽  
Vol 05 (07) ◽  
pp. 344-354
Author(s):  
Sivarajah Mylevaganam ◽  
Raghavan Srinivasan ◽  
Vijay P. Singh

2020 ◽  
Vol 14 (2) ◽  
pp. 154-161
Author(s):  
Diah Ainunisa ◽  
◽  
Gusfan Halik ◽  
Wiwik Yunarni Widiarti ◽  
◽  
...  

Population growth is one of the causes of land-use change that can increase runoff. Tanggul watershed is one of the watersheds which often overflows during the rainy season. This study purpose to analyze the effect of land-use changes on runoff in Tanggul watershed using SWAT (Soil and Water Assessment Tool) model. To make sure the performance of SWAT model calibration and classified by the value of NSE and R2. The result of calibration included in a good category and validation included in a very good category. This study was modeling forest land-use change in 2004-2017 to determine the effect of land-use change on runoff. The result in this model of forest land-use change can increase runoff.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2348
Author(s):  
Jiwan Lee ◽  
Jeehun Chung ◽  
Soyoung Woo ◽  
Yonggwan Lee ◽  
Chunggil Jung ◽  
...  

This study evaluated watershed health (WH) change using reference values for environmental changes at various times. Land use in 1985 was defined as the reference value under the most natural conditions, and the WH for the years 1995 to 2019 was calculated in comparison to 1985. The proposed method was used to assess the WH of 78 standard subbasins in South Korea’s Geum River Basin (GRB), where complex land-use change has occurred since 1995. For evaluating hydrology and water quality (WQ) health index, Soil and Water Assessment Tool (SWAT) and four land-use maps (1985, 1995, 2008, and 2019) were used to simulate the hydrology and WQ. A multivariate normal distribution (MND) from poor (0) to good (1) was used to assess WH based on SWAT modeling results. Based on the reference value, the WQ health from 1995 to 2019 changed to within 0.1, while the range of changes in the hydrology index was analyzed over 0.18. As a result of WH changes from 1985 to 2019, hydrological health deteriorated in high-density urbanized subbasins, while WQ health deteriorated in upland-cultivation-increased subbasins. This study provides useful information for recognizing potential WH issues related to long-term environmental changes.


2020 ◽  
Vol 25 (3) ◽  
pp. 342-348
Author(s):  
Widya Ulfah Utami ◽  
Enni Dwi Wahjunie ◽  
Suria Darma Tarigan

One of the priority watersheds to be managed in Indonesia is the Cisadane watershed due to the high degradation problems. The Cisadene watershed degradation could be indicated by a high river flow during rainy season, low baseflow in dry season, and high erosion and sedimentation. One of the main problems in the Cisadane watershed is a huge landcover changes in the Cisadane Hulu watershed that causes a decrease in water absorption region and a surface runoff. The study aimed to analyze landcover changes in the Cisadane Hulu Watershed during 2013-2018 and analyze the watershed conditions based on their hydrological characteristics. Analysis of landcover changes patterns was carried out by processing spatial data using GIS software. Analysis for hydrological characteristics was conducted by using SWAT modelling (Soil and Water Assessment Tool). The results showed that there were land cover changes during 2013-2018. The most significant landcover changes in the Cisadane Hulu watershed was residential area (455.95 ha). The result simulation scenario of the model SWAT showed scenario 2 was the best scenario for the management of the Cisadane Hulu watershed. The application of Soil and Water Conservation can decrease surface runoff by 32.1% and increase lateral flow by 8.89%. Therefore, it is expected that the results of this SWAT model simulation will be taken into consideration by the local government for the optimal management of the Cisadane Hulu watershed.   Keywords: Cisadane watershed, land cover change, SWAT modelling


Runoff is a very important phenomenon of hydrological cycle and it is relevant for the watershed management programme for conservation and development or natural resources and its management. However, In India the availability of accurate information on runoff is very scarce and needs to be calculated empirically for further developments. The Soil and Water Assessment Tool (SWAT) is a physical parameter model which has been developed to estimate values for the runoff, sediment and nutrient carry off from the agricultural watersheds under various distinct land management practices. For the present study, a small agricultural watershed has been selected for runoff assessment. Watershed is considered to be the ideal unit for management of the natural resources. Extraction of watershed parameters using Remote Sensing and Geographical Information System (GIS) and use of mathematical models is one of the current trends for hydrologic evaluation of these watersheds monitored. The Soil and Water Assessment Tool (SWAT) having an interface with Quantum GIS (QGIS) software (QSWAT version 1.3) was selected for the estimation of surface runoff from an area of Punpun basin near Patna an intermediate watershed of Punpun river, located in southern Bihar region. Maps of the region obtained from the Bihar Remote Sensing Application Centre (BIRSAC) were used for computation. The model was run and validated with the observed runoff and for the years 2005-2010. The performance of the model was evaluated using statistical and graphical methods to assess the capability of the model in simulating the surface runoff from the study area. According to the model estimates, the value for the surface runoff was maximum for the year 2007 as 710 mm and was minimum for the year 2005 with about 185 mm. As per the observed values of discharge from the Central Water Commission (CWC), the values for surface runoff for these years were different by about 10 to 11%.


2016 ◽  
Vol 15 (1) ◽  
pp. 175-188 ◽  
Author(s):  
Mohsen Salarpour ◽  
Milad Jajarmizadeh ◽  
Sobri Harun ◽  
Rozi Abdullah

Sign in / Sign up

Export Citation Format

Share Document