The Use of Nuclear Data as Nuisance Parameters in the Integral Data Assimilation of the PROFIL Experiments

2016 ◽  
Vol 182 (3) ◽  
pp. 377-393 ◽  
Author(s):  
E. Privas ◽  
P. Archier ◽  
C. De Saint Jean ◽  
G. Noguere ◽  
J. Tommasi
2020 ◽  
Vol 239 ◽  
pp. 13002
Author(s):  
Gerald Rimpault ◽  
Gilles Noguère ◽  
Cyrille de Saint Jean

The objective of this work is to revisit integral data assimilation for a better prediction of the characteristics of SFR cores. ICSBEP, IRPhE and MASURCA critical masses, PROFIL irradiation experiments and the FCA-IX experimental programme (critical masses and spectral indices) with well-mastered experimental technique have been used. As calculations are performed without modelling errors (with as-built geometries) and without approximations with the TRIPOLI4 MC code, highly reliable C/E are achieved. Assimilation results suggest a 2.5% decrease for 238U capture from 3 keV to 60 keV, and a 4-5% decrease for 238U inelastic in the plateau region. For this energy range, uncertainties are respectively reduced to 1-2% and to 2-2.5% for 238U capture and 238U inelastic respectively. The increase trends on 239Pu capture cross section of around 3% in the [2 keV-100 keV] energy range come from a low PROFIL 240Pu/239Pu ratio C/E. For 240Pu capture cross section, the increase trend of around 4% in the [3 keV-100 keV] energy range goes in the same direction as the recent ENDF/B.VIII evaluation though at a much lower level. The nuclear data uncertainty associated to SFR ASTRID critical mass is reduced to 470 pcm.


2019 ◽  
Vol 211 ◽  
pp. 03001
Author(s):  
Gerald Rimpault ◽  
Virginie Huy ◽  
Gilles Noguère

Nuclear data evaluations on major actinides can be improved by integral data assimilation. Appropriate integral measurements with reliable experimental techniques have been selected such as ICSBEP, IRPhE and MASURCA critical masses, PROFIL irradiation experiments and the FCAIX experimental programme (critical masses and spectral indices). Highly reliable analyses are possible with the use of as-built geometries calculated with the TRIPOLI4 Monte Carlo code. The C/E values have been used in an integral data assimilation solving the Bayes equation. The trends on the JEFF3.1.1 235U capture cross section are quite consistent with recent differential measurements. Assimilation results suggest up to a 2.5% decrease for 238U capture from 3 keV to 60 keV, and a 4-5% decrease for 238U inelastic in the plateau region. For this energy range, uncertainties are respectively reduced from 3-4 to 1-2% and from 6-9% to 2-2.5% for 238U capture and 238U inelastic. Results on 239Pu fission cross sections are included in posterior uncertainties. The increase trends on 239Pu capture cross-section is of around 3% in the [2 keV-100 keV] energy range. For 240Pu capture cross section, the increase is of around 4% in the [3 keV-100 keV] energy range and goes in the same direction as a recent evaluation.


2019 ◽  
Vol 5 ◽  
pp. 24
Author(s):  
Axel Rizzo ◽  
Claire Vaglio-Gaudard ◽  
Gilles Noguere ◽  
Romain Eschbach ◽  
Gabriele Grassi ◽  
...  

Comparisons of calculated and experimental isotopic compositions of used nuclear fuels can provide valuable information on the quality of nuclear data involved in neutronic calculations. The experimental database used in the present study − containing more than a thousand isotopic ratio measurements for UOX and MOX fuels with burnup ranging from 10 GWd/t up to 85 GWd/t − allowed to investigate 45 isotopic ratios covering a large number of actinides (U, Np, Pu, Am and Cm) and fission products (Nd, Cs, Sm, Eu, Gd, Ru, Ce, Tc, Mo, Ag and Rh). The Integral Data Assimilation procedure implemented in the CONRAD code was used to provide nuclear data trends with realistic uncertainties for Pressurized Water Reactors (PWRs) applications. Results confirm the quality of the 235U, 239Pu and 241Pu neutron capture cross sections available in the JEFF-3.1.1 library; slight increases of +1.2 ± 2.4%, +0.5 ± 2.2% and +1.2 ± 4.2% are respectively suggested, these all being within the limits of the quoted uncertainties. Additional trends on the capture cross sections were also obtained for other actinides (236U, 238Pu, 240Pu, 242Pu, 241Am, 243Am, 245Cm) and fission products (103Rh, 153Eu, 154Eu) as well as for the 238U(n,2n) and 237Np(n,2n) reactions. Meaningful trends for the cumulative fission yields of 144Ce, 133Cs, 137Cs and 106Ru for the 235U(nth,f) and 239Pu(nth,f) reactions are also reported.


2018 ◽  
Vol 4 ◽  
pp. 27 ◽  
Author(s):  
Roberto Capote ◽  
Andrej Trkov

Key reactions have been selected to compare JEFF-3.3 (CIELO 2) and IAEA CIELO (CIELO 1) evaluated nuclear data files for neutron induced reactions on 235U and 238U targets. IAEA CIELO evaluation uses reaction models to construct the evaluation prior, but strongly relied on differential data including all reaction cross sections fitted within the IAEA Neutron Standards project. The JEFF-3.3 evaluation relied on a mix of differential and integral data with strong contribution from nuclear reaction modelling. Differences in evaluations are discussed; a better reproduction of differential data for the IAEA CIELO evaluation is shown for key reaction channels.


2000 ◽  
Vol 37 (sup1) ◽  
pp. 697-702 ◽  
Author(s):  
Yican Wu ◽  
Yixue Chen ◽  
Ulrich Fischer ◽  
Yuan Chen ◽  
Li An

2020 ◽  
Vol 239 ◽  
pp. 13007
Author(s):  
Pablo Romojaro ◽  
Francisco Álvarez-Velarde

The Lead-cooled Fast Reactor is one of the three technologies selected by the Sustainable Nuclear Energy Technology Platform that can meet future European energy needs. The main drawbacks for the industrial deployment of LFR are the lack of operational experience and the impact of uncertainties. In nuclear reactor design the uncertainties mainly come from material properties, fabrication tolerances, operation conditions, simulation tools and nuclear data. The uncertainty in nuclear data is one of the most important sources of uncertainty in reactor physics simulations. Furthermore, it is known that the uncertainties in reactor criti-cality safety parameters are severely dependent on the nuclear data library used to estimate them. However, the impact of using different evaluations while performing data assimilation to constraint the uncertainties in the criticality parameters has not been properly assessed yet. In this work, a data assimilation for the main isotopes contributing to the uncertainty in keff of the ALFRED lead-cooled fast reactor has been performed with the SUMMON system using JEFF-3.3, ENDF/B-VIII.0 and JENDL-4.0u2 state-of-the-art nuclear data libraries, together with critical mass experiments from the International Criticality Safety Benchmark Evaluation Project that are representative of ALFRED, in order to assess the impact of using different evaluations for data assimilation.


2020 ◽  
Vol 239 ◽  
pp. 18004
Author(s):  
Axel Laureau ◽  
Vincent Lamirand ◽  
Dimitri Rochman ◽  
Andreas Pautz

This article presents the methodology developed to generate and use dosimeter covariances and to estimate nuisance parameters for the PETALE experimental programme. In anticipation of the final experimental results, this work investigates the consideration of these experimental correlations in the Bayesian assimilation process on nuclear data. Results show that the assimilation of a given set of dosimeters provides a strong constraint on some of the posterior reaction rate predictions of the other dosimeters. It confirms that, regarding the assimilation process, the different sets of dosimeters are correlated.


2019 ◽  
Vol 211 ◽  
pp. 07004
Author(s):  
J. Huyghe ◽  
C. De Saint-Jean ◽  
D. Lecarpentier ◽  
C. Reynard-Carette ◽  
C. Vaglio-Gaudard ◽  
...  

Nuclear decay heat is a crucial issue for PWR in-core safety after reactor shutdown and back-end cycle. It is a dimensioning parameter for safety injection systems (SIS) to avoid a dewatering of the reactor core. The decay heat uncertainty needs to be controlled over the largest range of applications. The assimilation of the MERCI-1 experiment was studied to provide feedbacks on nuclear data. This experiment consisted in the measurement of the decay heat of a PWR UOX fuel sample irradiated in the OSIRIS reactor, for cooling times between 45 minutes and 42 days. More specifically, the consideration of several experimental values of MERCI-1 at different cooling times was tested. This raised issues about correlations to consider between different measurements. Besides, the impact of considering correlations between independent fission yields in covariance matrices on the decay heat uncertainty calculation and on the feedbacks on nuclear data is discussed.


Sign in / Sign up

Export Citation Format

Share Document