Benign by design. New catalysts for an environmentally conscious age

2001 ◽  
Vol 73 (7) ◽  
pp. 1087-1101 ◽  
Author(s):  
John Meurig Thomas ◽  
Robert Raja ◽  
Gopinathan Sankar ◽  
Robert G. Bell ◽  
Dewi W. Lewis

There is a pressing need for: (i) cleaner fuels (free of aromatics and of minimal sulfur content) or ones that convert chemical energy directly to electricity, silently and without production of noxious oxides and particulates; (ii) chemical, petrochemical, and pharmaceutical processes that may be conducted in a one-step, solvent-free manner, and that use air as the preferred oxidant; and (iii) industrial processes that minimize consumption of energy, production of waste or the use of corrosive, explosive, volatile and nonbiodegradable materials. All these needs and other desiderata, such as the in situ production and containment of aggressive and hazardous reagents, and the avoidance of use of ecologically harmful elements, may be achieved by designing the appropriate heterogeneous inorganic catalyst, which, ideally should be cheap, readily preparable, and fully characterizable, preferably under in situ reaction conditions. A range of nanoporous and nanoparticle catalysts, designed, synthesized, characterized, and tested by the authors and their colleagues, that meet most of the stringent demands of sustainable development and responsible (clean) technology is described. Specific examples that are highlighted include: (a) the production of adipic acid (precursor of polyamides and urethanes) without the use of concentrated nitric acid or the production of greenhouse gases such as nitrous oxide; (b) the production of caprolactam (precursor of nylon) without the use of oleum and hydroxylamine sulfate; and (c) the terminal oxyfunctionalization of linear alkanes in air. The topic of biocatalysis and sustainable development is also briefly discussed, and a cautionary note is sounded concerning fast screening methods for the discovery of new inorganic catalysts.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Saadia Oubaassine ◽  
Angela Köckritz ◽  
Reinhard Eckelt ◽  
Andreas Martin ◽  
Mustapha Ait Ali ◽  
...  

In a one-step procedure, various β-bromoalcohols were synthesized from natural terpenes in good to excellent yields. Using different catalysts, the reaction was carried out at room temperature, with H2O as nucleophile and N-bromosuccinimide as a bromine source under mild reaction conditions. The synthesized β-bromoalcohols were subsequently converted in situ to the corresponding epoxides in good yields.


2020 ◽  
Author(s):  
Cheng Li-Jie ◽  
Zhao Siling ◽  
Neal Mankad

A Cu-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in-situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.<br>


2019 ◽  
Author(s):  
Tomas Vojkovsky ◽  
Shubham Deolka ◽  
Saiyyna P. Stepanova ◽  
Michael C. Roy ◽  
Eugene Khaskin

<a>Sulfones and sulfonamides with an α-CH bond can be easily alkylated by aliphatic alcohols to add the carbon skeleton of the alcohol via a one-step, Ru(II) catalyzed redox neutral reaction. The reaction requires a sub-stoichiometric amount of base and produces only water as a byproduct. A number of pharmaceutically relevant functional groups such as piperidine, morpholine, etc. are well tolerated under the reaction conditions to give higher value-added products in one step from widely available substrates. The reaction proceeds through a sulfone carbanion addition to an in-situ generated aldehyde formed via catalytic dehydrogenation and subsequent catalyst mediated replacement of the secondary alcohol by hydrogen.</a>


NANO ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. 1750148 ◽  
Author(s):  
Xinzhi Sun ◽  
Fanglin Du

Monometallic M1(M[Formula: see text] Ni/Cu/Fe/Co) silicates and bimetallic Ni–M2(M[Formula: see text] Cu/Fe/Co) silicates hollow spheres with mesoporous structure and the controllable morphology have been synthesized successfully via one-step sacrificial template method under hydrothermal conditions. The catalysts were obtained by reducing the corresponding silicates in situ under the hydrogen atmosphere at a certain temperature. All the silicates and the catalysts M1/SiO2 and Ni–M2/SiO2 hollow spheres have been characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) and temperature-programmed reduction (TPR) thoroughly and systematically. The morphology and reaction conditions of bimetallic Ni–M2 silicates hollow spheres depend on the second metal M2, which has been verified by SEM, TEM and XRD. From the results, it can be concluded that bimetallic silicates possess better physical properties in favor of the catalytic activity. Bimetallic Ni–M2/SiO2 hollow spheres had higher catalytic property than the monometallic M1/SiO2 and the conversion of nitrobenzene could reach 100% within 3[Formula: see text]h using Ni–Cu/SiO2 and Ni–Fe/SiO2 hollow spheres as catalysts.


2019 ◽  
Author(s):  
Tomas Vojkovsky ◽  
Shubham Deolka ◽  
Saiyyna P. Stepanova ◽  
Michael C. Roy ◽  
Eugene Khaskin

<a>Sulfones and sulfonamides with an α-CH bond can be easily alkylated by aliphatic alcohols to add the carbon skeleton of the alcohol via a one-step, Ru(II) catalyzed redox neutral reaction. The reaction requires a sub-stoichiometric amount of base and produces only water as a byproduct. A number of pharmaceutically relevant functional groups such as piperidine, morpholine, etc. are well tolerated under the reaction conditions to give higher value-added products in one step from widely available substrates. The reaction proceeds through a sulfone carbanion addition to an in-situ generated aldehyde formed via catalytic dehydrogenation and subsequent catalyst mediated replacement of the secondary alcohol by hydrogen.</a>


2020 ◽  
Author(s):  
Cheng Li-Jie ◽  
Zhao Siling ◽  
Neal Mankad

A Cu-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in-situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.<br>


2009 ◽  
Vol 66 ◽  
pp. 230-233 ◽  
Author(s):  
Tao Wei ◽  
Zhi Xiong Huang ◽  
Guo Rui Yang ◽  
Min Xian Shi

The PANI/PMN composite was prepared by one-step in-situ polymerization method and was characterized via FT-IR, XRD, SEM and TG. The results indicate that the best reaction conditions of in-situ polymerization are 0°C/24h.The PMN powder are entirely coated with PANI, when composite contains more than 60% PANI by volume. The steric hindrance effect of PMN powder decreases the crystallization degree of PANI which polymerizes on the surface of PMN powder in the process of in-situ polymerization. The main weight loss occurring between 300 and 480°C corresponds to the degradation of the PANI polymer chain.


2019 ◽  
Author(s):  
Shiori Date ◽  
Kensei Hamasaki ◽  
Karen Sunagawa ◽  
Hiroki Koyama ◽  
Chikayoshi Sebe ◽  
...  

<div>We report here a catalytic, Markovnikov selective, and scalable synthetic method for the synthesis of saturated sulfur heterocycles, which are found in the structures of pharmaceuticals and natural products, in one step from an alkenyl thioester. Unlike a potentially labile alkenyl thiol, an alkenyl thioester is stable and easy to prepare. The powerful Co catalysis via a cobalt hydride hydrogen atom transfer and radical-polar crossover mechanism enabled simultaneous cyclization and deprotection. The substrate scope was expanded by the extensive optimization of the reaction conditions and tuning of the thioester unit.</div>


Sign in / Sign up

Export Citation Format

Share Document