Studies on biodegradable poly(hexano-6-lactone) fibers. Part 3. Enzymatic degradation in vitro (IUPAC Technical Report)

2002 ◽  
Vol 74 (5) ◽  
pp. 869-880 ◽  
Author(s):  
Toshio Hayashi ◽  
Kazuo Nakayama ◽  
Masatsugu Mochizuki ◽  
Toshiro Masuda

Poly(hexano-6-lactone) (PCL*) fibers were enzymatically degraded by a hydrolase in vitro. The extent of degradation of PCL fibers was examined by weight loss, mechanical properties loss such as tensile strength and ultimate elongation decreases, and visual observations by scanning electron microscopy. The in vitro degradation of PCL fibers was carried out using a lipoprotein lipase (Lipase-PS) as a hydrolase. The kinetic study on the weight loss of PCL fiber accompanying the enzymatic degradation suggested that the degradation of PCL fibers gradually takes place from the surface, not bulk degradation. The rate of degradation was found to depend on draw ratio and crystallinity of the PCL fibers. The strength loss of PCL fibers in the course of degradation took place faster than the weight loss of PCL fibers. Sonic velocity measurements as well as dynamic mechanical properties of PCL fibers were also examined as a function of weight loss of sample fibers with Lipase-PS treatments. It was shown that sonic velocity and value of loss tangent d changed steeply for undrawn PCL fiber in the first step with enzymatic digestion.

2018 ◽  
Vol 2 (2) ◽  
pp. 14-17
Author(s):  
Zhuola Zhuola ◽  
Steve Barrett ◽  
Yalda Ashraf Kharaz ◽  
Riaz Akhtar

The mechanical properties of ocular tissues, such as the sclera, have a major impact on healthy eye function, and are governed by the properties and composition of the microstructural components. For example, biomechanical degradation associated with myopia occurs alongside a reduction of proteoglycans (PGs). In this study, the role of PG degradation in the nanomechanical properties of the porcine sclera is explored. In-vitro enzymatic degradation of PGs was conducted with α-amylase and chondroitinase ABC enzymes. Collagen fibril morphology and nanomechanical stiffness were measured with atomic force microscopy (AFM). The elastic modulus of the tissue was reduced in all enzyme-treated samples relative to controls. In addition, collagen fibril organization was disrupted by PG depletion. Our data demonstrate that PGs play an important role in determining not only the mechanical properties at these length scales, but also collagen fibril arrangement.


2005 ◽  
Vol 98 (4) ◽  
pp. 1434-1441 ◽  
Author(s):  
Lauren D. Black ◽  
Kelly K. Brewer ◽  
Shirley M. Morris ◽  
Barbara M. Schreiber ◽  
Paul Toselli ◽  
...  

Pulmonary emphysema and vessel wall aneurysms are diseases characterized by elastolytic damage to elastin fibers that leads to mechanical failure. To model this, neonatal rat aortic smooth muscle cells were cultured, accumulating an extracellular matrix rich in elastin, and mechanical measurements were made before and during enzymatic digestion of elastin. Specifically, the cells in the cultures were killed with sodium azide, the cultures were lifted from the flask, cut into small strips, and fixed to a computer-controlled lever arm and a force transducer. The strips were subjected to a broadband displacement signal to study the dynamic mechanical properties of the samples. Also, quasi-static stress-strain curves were measured. The dynamic data were fit to a linear viscoelastic model to estimate the tissues' loss (G) and storage (H) modulus coefficients, which were evaluated before and during 30 min of elastase treatment, at which point a failure test was performed. G and H decreased significantly to 30% of their baseline values after 30 min. The failure stress of control samples was ∼15 times higher than that of the digested samples. Understanding the structure-function relationship of elastin networks and the effects of elastolytic injury on their mechanical properties can lead to the elucidation of the mechanism of elastin fiber failure and evaluation of possible treatments to enhance repair in diseases involving elastolytic injury.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 261-266 ◽  
Author(s):  
L. P. Silva ◽  
M. D. P. Ribeiro ◽  
E. S. Trichês ◽  
M. Motisuke

Abstract Calcium phosphate cements (CPCs) are potential materials for repairing bone defects, mainly due to their excellent biocompatibility and osteoconductivity. Nevertheless, their low mechanical properties limit their usage in clinical applications. The gelatin addition may improve the mechanical and biological properties of CPCs, but their solubility in water may increase the porosity of the cement during degradation. Thus, the aim of this work was to investigate the influence of gelatin on the setting time, compressive strength and degradation rate of a brushite cement. CPCs were prepared with the addition of 0, 5, 10 and 20 wt% of gelatin powder in the solid phase of the cement. The results indicated that the setting time increased with gelatin. Furthermore, cement with 20 wt% of gelatin had an initial compressive strength of 14.1±1.8 MPa while cement without gelatin had 4.5±1.2 MPa. The weight loss, morphology and compressive strength were evaluated after degradation in Ringer’s solution. According to the weight loss data, gelatin was eliminated of samples during degradation. It was concluded that the presence of gelatin improved CPCs mechanical properties; however, as degradation in Ringer’s solution evolved, cement compressive strength decreased due to gelatin dissolution and, consequently, an increase in sample porosity.


2017 ◽  
Vol 1 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Andrea Lončarević ◽  
Marica Ivanković ◽  
Anamarija Rogina

Up till now, chitosan has confirmed its versatile application in skin, cartilage and bone tissue engineering, as well as in drug delivery applications. This study is focused on enzymatic degradation of porous chitosan structures usually designed for mentioned purposes. In vitro degradation was monitored during four weeks of incubation at physiological temperature and in two different media, phosphate buffer saline solution and water. The scaffolds were characterised before and after enzymatic degradation using scanning electron microscopy and infrared spectroscopy with Fourier transformations (FTIR). According to the gravimetric analysis, higher weight loss of chitosan scaffolds was observed in buffered medium with respect to the water. The results implied that the total weight loss obtained in buffer involves physical dissolution of chitosan and lysozyme cleavage of glycoside bond. Importantly, FTIR identification of chitosan scaffolds after enzymatic degradation indicated the absence of lysozyme activity in water, indicating that weight loss is a result of the chitosan dissolution. This finding greatly impacts design of degradation experiments and characterisation of degradation behaviour of chitosan-based materials utilised as implants or drug delivery systems.


2007 ◽  
Vol 119 ◽  
pp. 95-98
Author(s):  
Youn Mook Lim ◽  
Joon Pyo Jeun ◽  
Chan Hee Jung ◽  
Jae Hak Choi ◽  
Phil Hyun Kang ◽  
...  

Nano- to micro-structured biodegradable poly(ε-caprolactone) nanofibrous scaffolds (PCL NFSs) were prepared by an electrospinning. Electrospinning has recently emerged as a leading technique for generating the biomimetic scaffolds for tissue engineering applications. The average diameter of the electrospun PCL NFSs ranged from 0.5 to 2 ㎛ depending on the solvent/nonsolvent mixture. PCL NFSs were irradiated using γ-ray and their mechanical properties and biodegradability were measured. In vitro/vivo degradation studies of the scaffolds as a function of the radiation dose were performed. The scaffolds were degraded more slowly in vitro than in vivo.


Sign in / Sign up

Export Citation Format

Share Document