GATA transcription factors and fat cell formation

2003 ◽  
Vol 16 (9) ◽  
pp. 585 ◽  
Author(s):  
Q. Tong ◽  
J. Tsai ◽  
G.S. Hotamisligil
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Keita Matsuoka ◽  
Ryosuke Sato ◽  
Yuki Matsukura ◽  
Yoshiki Kawajiri ◽  
Hiromi Iino ◽  
...  

AbstractANAC071 and its homolog ANAC096 are plant-specific transcription factors required for the initiation of cell division during wound healing in incised Arabidopsis flowering stems and Arabidopsis hypocotyl grafts; however, the mechanism remains mostly unknown. In this study, we showed that wound-induced cambium formation involved cell proliferation and the promoter activity of TDR/PXY (cambium-related gene) in the incised stem. Prior to the wound-induced cambium formation, both ANAC071 and ANAC096 were expressed at these sites. anac-multiple mutants significantly decreased wound-induced cambium formation in the incised stems and suppressed the conversion from mesophyll cells to cambial cells in an ectopic vascular cell induction culture system (VISUAL). Our results suggest that ANAC071 and ANAC096 are redundantly involved in the process of “cambialization”, the conversion from differentiated cells to cambial cells, and these cambium-like cells proliferate and provide cells in wound tissue during the tissue-reunion process.


2021 ◽  
Vol 85 (3) ◽  
pp. 587-599
Author(s):  
Akane Sato ◽  
Takumi Kimura ◽  
Kana Hondo ◽  
Miyuki Kawano-Kawada ◽  
Takayuki Sekito

ABSTRACT In Saccharomyces cerevisiae, Avt4 exports neutral and basic amino acids from vacuoles. Previous studies have suggested that the GATA transcription factors, Gln3 and Gat1, which are key regulators that adapt cells in response to changes in amino acid status, are involved in the AVT4 transcription. Here, we show that mutations in the putative GATA-binding sites of the AVT4 promoter reduced AVT4 expression. Consistently, a chromatin immunoprecipitation (ChIP) assay revealed that Gat1-Myc13 binds to the AVT4 promoter. Previous microarray results were confirmed that gln3∆gat1∆ cells showed a decrease in expression of AVT1 and AVT7, which also encode vacuolar amino acid transporters. Additionally, ChIP analysis revealed that the AVT6 encoding vacuolar acidic amino acid exporter represents a new direct target of the GATA transcription factor. The broad effect of the GATA transcription factors on the expression of AVT transporters suggests that vacuolar amino acid transport is integrated into cellular amino acid homeostasis.


Sign in / Sign up

Export Citation Format

Share Document