Recent Naimona’Nyi Glacier surface elevation changes on the Tibetan Plateau based on ICESat/GLAS, SRTM DEM and GPS measurements

2014 ◽  
Vol 59 (21) ◽  
pp. 2108-2118 ◽  
Author(s):  
LiDe TIAN ◽  
QingHua YE ◽  
JiBiao ZONG
2014 ◽  
Vol 60 (224) ◽  
pp. 1208-1220 ◽  
Author(s):  
Ken Whitehead ◽  
Brian Moorman ◽  
Pablo Wainstein

AbstractTwin time-lapse cameras were set up to provide a convergent view of ten targets located on the surface of an Arctic glacier, near its terminus. Using photogrammetric analysis, daily target elevations were calculated over three winters and two ablation seasons. Results show that the glacier surface level dropped by approximately 2.9 and 2.5 m respectively over the 2009 and 2010 ablation seasons. GPS measurements suggest the associated average vertical errors were 0.105 m and 0.04 m respectively. Photogrammetric measurements indicated that thinning from melting exceeded surface gains due to ice inflow by a factor of ~ 5: 1 during 2009 and 2010. Horizontal flow rates of 6–12 mm d–1 were measured photogrammetrically during autumn 2008 and compared to interpolated winter rates established from GPS measurements, with differences ranging between 7.4% and 17.2%. The availability of a continuous series of data for the duration of the study allowed the start and end dates of each ablation season to be identified, making it possible to determine the length of each balance year. The results show the utility of time-series photogrammetry for observing surface elevation changes and dynamic processes in remote glacial environments.


2020 ◽  
Author(s):  
Qinghua Ye ◽  
Wei Nie ◽  
Yimin Chen ◽  
Gang Li ◽  
lide Tian ◽  
...  

<p>Glaciers in the central Himalayas are important water resources for the downstream habitants, and accelerating melting of the high mountain glaciers speed up with continuous warming. We summerized the geodetic glacier surface elevation changes (Dh) by 6 data sets at different time periods during 1974-2016 in RongbukCatchment(RC) on the northern slope of Mt. Qomolangma (Mt. Everest) in the Central Himalayas. The result showed that glacier Dh varied with altitude and time, from -0.29 ± 0.03m a<sup>-1</sup> in 1974-2000, to -0.47 ±0.24 m a<sup>-1</sup> in 1974-2006,and -0.48 ±0.16 m a<sup>-1</sup> in 1974-2012. Dh increased to -0.60 ± 0.20 m a<sup>-1</sup> in 2000-2012, then decreased to-0.46 ± 0.24 m a<sup>-1</sup> in 2000-2014, and by -0.49 ± 0.08 m a<sup>-1</sup> in 2000-2016, showing a diverse rate being up - down- a little up. However, it generally presented a similar glacier thinning rate by -0.46~-0.49 m a<sup>-1</sup> in the last four decades since 1970s in RC according to Dh<sub>1974-2006</sub>, Dh<sub>1974-2012</sub>, Dh<sub>2000-2014</sub>, and Dh<sub>2000-2016</sub>. Local meteorological observations revealed that, to a first order, the glacier thinning rate was kept the same pace with the number of annual melting days (MD). In spite of the obviously arising summer air temperature (T<sub>S</sub>) in 2000-2014, a slowdown glacier melting rate by -391 mm w.e.a<sup>-1</sup> occurred in 2000-2014 because of less melting days with more precipitation and less annual mean temperature(T<sub>m</sub>). It shows that MD is another important indicator and controlling factor to evaluate or to estimate glacier melting trend, especially in hydrological or climate modeling.</p>


2022 ◽  
Vol 14 (2) ◽  
pp. 354
Author(s):  
Jan Kavan ◽  
Guy D. Tallentire ◽  
Mihail Demidionov ◽  
Justyna Dudek ◽  
Mateusz C. Strzelecki

Tidewater glaciers on the east coast of Svalbard were examined for surface elevation changes and retreat rate. An archival digital elevation model (DEM) from 1970 (generated from aerial images by the Norwegian Polar Institute) in combination with recent ArcticDEM were used to compare the surface elevation changes of eleven glaciers. This approach was complemented by a retreat rate estimation based on the analysis of Landsat and Sentinel-2 images. In total, four of the 11 tidewater glaciers became land-based due to the retreat of their termini. The remaining tidewater glaciers retreated at an average annual retreat rate of 48 m year−1, and with range between 10–150 m year−1. All the glaciers studied experienced thinning in their frontal zones with maximum surface elevation loss exceeding 100 m in the ablation areas of three glaciers. In contrast to the massive retreat and thinning of the frontal zones, a minor increase in ice thickness was recorded in some accumulation areas of the glaciers, exceeding 10 m on three glaciers. The change in glacier geometry suggests an important shift in glacier dynamics over the last 50 years, which very likely reflects the overall trend of increasing air temperatures. Such changes in glacier geometry are common at surging glaciers in their quiescent phase. Surging was detected on two glaciers studied, and was documented by the glacier front readvance and massive surface thinning in high elevated areas.


2016 ◽  
Vol 19 (2) ◽  
pp. 130-137
Author(s):  
Vu Hien Phan ◽  
Roderik Lindenbergh ◽  
Massimo Menenti

Monitoring glacier changes is essential for estimating the water mass balance of the Tibetan Plateau. Recent research indicates that glaciers at individual regions on the Tibetan Plateau and surroundings are shrinking and thinning during the last decades. Studies considering large regions often ignored however the impact of locally varying weather conditions and terrain characteristics on glacial evolution, i.e. the impact of orographic precipitation and variation in solar radiation. Our hypothesis is therefore that adjacent glaciers of opposite orientation change in a different way. In this study, we exploit Ice Cloud and land Elevation Satellite (ICESat)/ Geoscience Laser Altimetry System (GLAS) data in combination with the NASA Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) and the Global Land Ice Measurements from Space (GLIMS) glacier mask to estimate glacial thickness change trends between 2003 and 2009 on the whole Tibetan Plateau. The results show that 90 glacial areas could be distinguished. Most of observed glacial areas on the Tibetan Plateau are thinning, except for some glaciers in the Northwest. In general, glacial elevations on the whole Tibetan Plateau decreased at an average rate of -0.17 ± 0.47 meters per year (m a-1) between 2003 and 2009, taking together glaciers of any size, distribution, and location of the observed glacial area. Moreover, the results show that glacial elevation changes indeed strongly depend on the relative position in a mountain range.


2018 ◽  
Vol 64 (245) ◽  
pp. 450-464 ◽  
Author(s):  
COLLEEN A. MORTIMER ◽  
MARTIN SHARP ◽  
WESLEY VAN WYCHEN

ABSTRACTRepeat airborne laser altimetry measurements show widespread thinning (surface lowering) of glaciers in Canada's Queen Elizabeth Islands since 1995. Thinning rates averaged for 50 m elevation bins, were more than three times higher during the period 2005/06 to 2012/14 pentad than during the previous two pentads. Strongly negative thickness change (dh/dt) anomalies from 2005/06 to 2012/14, relative to the 1995–2012/14 mean, suggest that most of the measured thinning occurred during the most recent 5–6 year period when mean summer land surface temperatures (LSTs) were anomalously high and the mean summer black-sky shortwave broadband albedos (BSA) were anomalously low, relative to the 2000/01–15/16 period, and upper-air (700 hPa) and near surface (2 m) air temperatures were between 0.8°C and 1.5°C higher than 1995–2012 mean. Comparisons of dh/dt with mean summer LST and BSA measurements from the Moderate Resolution Imaging Spectroradiometer and with surface longitudinal strain rates computed from surface velocity fields derived from RADARSAT 1/2 and Landat-7 ETM + data suggest that surface elevation changes were driven mainly by changes in climate. An exception to this occurs along many fast-flowing outlet glaciers where ice dynamics appear also to have played an important role in surface elevation changes.


2020 ◽  
Author(s):  
Nischay Soni ◽  
Bryan Mark ◽  
Forrest Schoessow ◽  
Scott Reinemann ◽  
James DeGrand ◽  
...  

2010 ◽  
Vol 56 (195) ◽  
pp. 65-74 ◽  
Author(s):  
Yong Zhang ◽  
Koji Fujita ◽  
Shiyin Liu ◽  
Qiao Liu ◽  
Xin Wang

AbstractDigital elevation models (DEMs) of the ablation area of Hailuogou glacier, China, produced from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data obtained in 2009, differential GPS (DGPS) data surveyed in 2008 and aerial photographs acquired in 1966 and 1989 are differenced to estimate long- and short-term glacier surface elevation change (dh/dt). The mean dh/dt of the ablation area over 43 years (1966–2009) is −1.1 ± 0.4 m a−1. Since 1989 the thinning has accelerated significantly. Ice velocities measured by DGPS at 28 fixed stakes implanted in the ablation area increase with distance from the glacier terminus, ranging from 41.0 m a−1 approaching the glacier terminus to a maximum of 205.0 m a−1 at the base of an icefall. Our results reveal that the overall average ice velocity in the ablation area has undergone significant temporal variability over the past several decades. Changes in glacier surface elevation in the ablation area result from the combined effects of climate change and glacier dynamics, which are driven by different factors for different regions and periods.


2013 ◽  
Vol 14 (4) ◽  
pp. 1278-1292 ◽  
Author(s):  
Junchao Shi ◽  
Massimo Menenti ◽  
Roderik Lindenbergh

Abstract Glaciers in the Tibetan mountains are expected to be sensitive to turbulent sensible and latent heat fluxes. One of the most significant factors of the energy exchange between the atmospheric boundary layer and the glacier is the roughness of the glacier surface. However, methods to parameterize this roughness for glacier surfaces in remote regions are not well known. In this paper, the authors use the data acquired by Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS) laser altimetry from February 2003 to November 2004 along several tracks over glaciers of the Nyainqêntanglha range in central Tibet. The authors make a study of the waveforms measured by the ICESat/GLAS laser system over mountainous and glacial areas. The surface characteristics are evaluated within laser footprints over the glacier outlines based on the glaciological inventory of the Tibetan Plateau constructed by the Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences. For this purpose, the authors extract waveform parameters: the waveform width, the number of modes, and the RMS width of the waveform. These parameters are compared with surface slope and roughness obtained from the Advanced Spaceborne Thermal Emission and Reflection Radar (ASTER) Global Digital Elevation Model (GDEM). Through this analysis, the impact of morphology on the returned laser waveform is shown for the Nyainqêntanglha range. The roughness and the slope of the surface can be quite significant and may contribute from several meters to tens of meters to the pulse extent. The waveform analysis results indicate that the received waveforms are capable representations of surface relief within the GLAS footprints.


Sign in / Sign up

Export Citation Format

Share Document