Extraction of glacier surface elevation and velocity in high Asia with ERS-1/2 Tandem SAR data: Application to Puruogangri ice field, Tibetan Plateau

Author(s):  
Lin Liu ◽  
Liming Jiang ◽  
Hansheng Wang
2021 ◽  
pp. 1-15
Author(s):  
Yin Fu ◽  
Qiao Liu ◽  
Guoxiang Liu ◽  
Bo Zhang ◽  
Rui Zhang ◽  
...  

Abstract Most glaciers on the Tibetan Plateau have experienced continuous mass losses in response to global warming. However, the seasonal dynamics of glaciers on the southeastern Tibetan Plateau have rarely been reported in terms of glacier surface elevation and velocity. This paper presents a first attempt to explore the seasonal dynamics of the debris-covered Dagongba Glacier within the southeastern Tibetan Plateau. We use the multitemporal unoccupied aerial vehicle images collected over the lower ablation zone on 8 June and 17 October 2018, and 13 May 2019, and then perform an analysis concerning climatic fluctuations. The results reveal that the mean surface elevation decrease of the Dagongba Glacier during the warm season ( $2.81\pm 0.44$ m) was remarkably higher than the cold season ( $0.72\pm 0.45$ m). Particularly notable glacier surface elevation changes were found around supraglacial lakes and ice cliffs where ice ablation rates were $\sim$ 3 times higher than the average. In addition, a larger longitudinal decline of glacier surface velocity was observed in the warm season than that in the cold season. In terms of further comparative analysis, the Dagongba Glacier experienced a decrease in surface velocity between 1982–83 and 2018–19, with a decrease in the warm season possibly twice as large as that in the cold season.


2020 ◽  
Vol 12 (7) ◽  
pp. 1133
Author(s):  
Yufan Qie ◽  
Ninglian Wang ◽  
Yuwei Wu ◽  
An’an Chen

In the context of global warming, the land surface temperature (LST) from remote sensing data is one of the most useful indicators to directly quantify the degree of climate warming in high-altitude mountainous areas where meteorological observations are sparse. Using the daily Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A1 V6) after eliminating pixels that might be contaminated by clouds, this paper analyzes temporal and spatial variations in the mean LST on the Purog Kangri ice field, Qinghai–Tibetan Plateau, in winter from 2001 to 2018. There was a large increasing trend in LST (0.116 ± 0.05 °C·a−1) on the Purog Kangri ice field during December, while there was no evident LST rising trend in January and February. In December, both the significantly decreased albedo (−0.002 a−1, based on the MOD10A1 V6 albedo product) on the ice field surface and the significantly increased number of clear days (0.322 d·a−1) may be the main reason for the significant warming trend in the ice field. In addition, although the two highest LST of December were observed in 2017 and 2018, a longer data set is needed to determine whether this is an anomaly or a hint of a warmer phase of the Purog Kangri ice field in December.


Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 496 ◽  
Author(s):  
Lin Liu ◽  
Liming Jiang ◽  
Yafei Sun ◽  
Hansheng Wang ◽  
Chaolu Yi ◽  
...  

2008 ◽  
Vol 4 (3) ◽  
pp. 175-180 ◽  
Author(s):  
T. Yao ◽  
K. Duan ◽  
B. Xu ◽  
N. Wang ◽  
X. Guo ◽  
...  

Abstract. Lack of reliable long-term precipitation record from the northern Tibetan Plateau has constrained our understanding of precipitation variations in this region. We drilled an ice core on the Puruogangri Ice Field in the central Tibetan Plateau in 2000 to reveal the precipitation variations. The well dated part of the core extends back to AD 1600, allowing us to construct a 400-year annual accumulation record. This record shows that the central Tibetan plateau experienced a drier period with an average annual precipitation of ~300 mm in the 19th century, compared to ~450 mm in the wetter periods during 1700–1780 and the 20th century. This pattern agrees with precipitation reconstructions from the Dunde and Guliya ice cores on the northern Plateau but differs from that found in the Dasuopu ice cores from the southern Plateau The north-south contrasts in precipitation reconstruction reveals difference in moisture origin between the south Tibetan Plateau dominated by the Asian monsoon and the north Tibetan Plateau dominated by the continental recycling and the westerlies.


1965 ◽  
Vol 5 (41) ◽  
pp. 547-566 ◽  
Author(s):  
Mark F. Meier ◽  
W. V. Tangborn

AbstractIce velocity, net mass budget and surface elevation change data were collected over the length and width of a small (3.4 km. long) valley glacier from 1957 to 1964. Ice velocities range up to about 20 m./yr.; three prominent velocity maxima along the length of the glacier correspond to maxima in surface slope. Net mass budgets averaged over the glacier surface range between − 3.3 m. of water equivalent (1957–58) and +1.2 m. (1963–64). Except for the year 1960–61, curves of net budget versus altitude are parallel. During the period 1958–61 the glacier became thinner at a rate averaging 0.93 m./yr. The net budget and thinning data are internally consistent. Relations between emergence velocity, net budget and surface elevation change are examined at four specific points on the glacier surface and as functions of distance along the length of the glacier. Emergence velocity averages about −0.5 m. in the upper part of the glacier and about +1.0 m. in the lower part. Ice discharge and ice thickness are also calculated as functions of distance. The discharge reaches a peak of 8.8 × 105m.3of ice per year 2.2 km. from the head of the glacier. The mean thickness of the glacier is about 83 m. A steady-state distribution of net budget is used to calculate a steady-state discharge, which is 2.2 times larger than the present discharge.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1749 ◽  
Author(s):  
Junli Xu ◽  
Donghui Shangguan ◽  
Jian Wang

In this study, contour lines from the topographic maps at a 1:100,000 scale (mapped in 1968), Landsat MSS/TM/OLI images, ASTER images and SPOT 6-7 stereo image pairs were used to study changes in glacier length, area and surface elevation. We summarized the results using the following three conclusions: (1) During the period from 1973 to 2013, glaciers retreated by 412 ± 32 m at a mean retraction rate of 10.3 ± 0.8 m·year−1 and the relative retreat was 5.6 ± 0.4%. The glacier area shrank by 7.5 ± 3.4%, which was larger than the glacier length. In the periods of 1968–2000, 2000–2005 and 2000–2013, the glacier surface elevation change rates were −7.7 ± 1.4 m (−0.24 ± 0.04 m·year−1), −1.9 ± 1.5 m (−0.38 ± 0.25 m·year−1) and −5.0 ± 1.4 m (−0.38 ± 0.11 m·year−1), respectively. The changes in the glacier area and thickness exhibited similar trends, both showing a significant increasing reduction after 2000. (2) Eleven glaciers were identified as surging glaciers. Changes of the mass balance in surging glaciers were stronger than in non-surging glaciers between 1968 and 2013. Changes of area in surging glaciers were weaker than in non-surging glaciers. (3) Increasing temperature was the major cause of glacier thickness reduction and area shrinkage. The increase in precipitation, to a certain extent, inhibited glacial ablation but it did not change the status of the shrinkage in the glacial area and the reduction in the glacier thickness.


Sign in / Sign up

Export Citation Format

Share Document