Iterative retrieval method for ocean attenuation profiles measured by airborne lidar

2020 ◽  
Vol 59 (10) ◽  
pp. C42
Author(s):  
Hang Liu ◽  
Peng Chen ◽  
Zhihua Mao ◽  
Delu Pan
2019 ◽  
Vol 11 (15) ◽  
pp. 1826 ◽  
Author(s):  
Peng Chen ◽  
Delu Pan

Increasingly, LiDAR has more and more applications. However, so far, there are no relevant publications on using airborne LiDAR for ocean optical profiling in the South China Sea (SCS). The applicability of airborne LiDAR for optical profiling in the SCS will be presented. A total of four airborne LiDAR flight experiments were conducted over autumn 2017 and spring 2018 in the SCS. A hybrid retrieval method will be presented here, which incorporates a Klett method to obtain LiDAR attenuation coefficient and a perturbation retrieval method for a volume scattering function at 180°. The correlation coefficient between the LiDAR-derived results and the traditional measurements was 0.7. The mean absolute relative error (MAE) and the normalized root mean square deviation (NRMSD) between the two are both between 10% and 12%. Subsequently, the vertical structure of the LiDAR-retrieved attenuation and backscattering along airborne LiDAR flight tracks was mapped. In addition to this, ocean subsurface phytoplankton layers were detected between 10 to 20 m depths along the flight track in Sanya Bay. Primary results demonstrated that our airborne LiDAR has an independent ability to survey and characterize ocean optical structure.


2015 ◽  
Vol 6 (1) ◽  
pp. 19-29 ◽  
Author(s):  
G. Bitelli ◽  
P. Conte ◽  
T. Csoknyai ◽  
E. Mandanici

The management of an urban context in a Smart City perspective requires the development of innovative projects, with new applications in multidisciplinary research areas. They can be related to many aspects of city life and urban management: fuel consumption monitoring, energy efficiency issues, environment, social organization, traffic, urban transformations, etc. Geomatics, the modern discipline of gathering, storing, processing, and delivering digital spatially referenced information, can play a fundamental role in many of these areas, providing new efficient and productive methods for a precise mapping of different phenomena by traditional cartographic representation or by new methods of data visualization and manipulation (e.g. three-dimensional modelling, data fusion, etc.). The technologies involved are based on airborne or satellite remote sensing (in visible, near infrared, thermal bands), laser scanning, digital photogrammetry, satellite positioning and, first of all, appropriate sensor integration (online or offline). The aim of this work is to present and analyse some new opportunities offered by Geomatics technologies for a Smart City management, with a specific interest towards the energy sector related to buildings. Reducing consumption and CO2 emissions is a primary objective to be pursued for a sustainable development and, in this direction, an accurate knowledge of energy consumptions and waste for heating of single houses, blocks or districts is needed. A synoptic information regarding a city or a portion of a city can be acquired through sensors on board of airplanes or satellite platforms, operating in the thermal band. A problem to be investigated at the scale A problem to be investigated at the scale of the whole urban context is the Urban Heat Island (UHI), a phenomenon known and studied in the last decades. UHI is related not only to sensible heat released by anthropic activities, but also to land use variations and evapotranspiration reduction. The availability of thermal satellite sensors is fundamental to carry out multi-temporal studies in order to evaluate the dynamic behaviour of the UHI for a city. Working with a greater detail, districts or single buildings can be analysed by specifically designed airborne surveys. The activity has been recently carried out in the EnergyCity project, developed in the framework of the Central Europe programme established by UE. As demonstrated by the project, such data can be successfully integrated in a GIS storing all relevant data about buildings and energy supply, in order to create a powerful geospatial database for a Decision Support System assisting to reduce energy losses and CO2 emissions. Today, aerial thermal mapping could be furthermore integrated by terrestrial 3D surveys realized with Mobile Mapping Systems through multisensor platforms comprising thermal camera/s, laser scanning, GPS, inertial systems, etc. In this way the product can be a true 3D thermal model with good geometric properties, enlarging the possibilities in respect to conventional qualitative 2D images with simple colour palettes. Finally, some applications in the energy sector could benefit from the availability of a true 3D City Model, where the buildings are carefully described through three-dimensional elements. The processing of airborne LiDAR datasets for automated and semi-automated extraction of 3D buildings can provide such new generation of 3D city models.


2020 ◽  
Author(s):  
Jared Branch

Studies assessing the phenomenological characteristics of episodic memories, episodic future thoughts, and episodic counterfactual thoughts normally utilize a within-subjects design. As such, there are concerns that the observed similarities in phenomenological characteristics are the result of demand effects or other related matters, rather than theoretical considerations. In this study, a within-subjects experimental design was directly compared with a between-subjects experimental design. In both conditions, participants responded to existing questionnaires used to assess phenomenological characteristics of episodic memories, episodic future thoughts, and episodic counterfactual thoughts. The within-subjects design resulted more often in significant findings and larger effect sizes compared to the between-subjects design. The implications for experimental design in future studies is discussed.


2001 ◽  
Author(s):  
Georgia H. Stoppelaire ◽  
John Brock ◽  
Chris Lea ◽  
Mark Duffy ◽  
William Krabill

2017 ◽  
Vol 168 (3) ◽  
pp. 127-133
Author(s):  
Matthew Parkan

Airborne LiDAR data: relevance of visual interpretation for forestry Airborne LiDAR surveys are particularly well adapted to map, study and manage large forest extents. Products derived from this technology are increasingly used by managers to establish a general diagnosis of the condition of forests. Less common is the use of these products to conduct detailed analyses on small areas; for example creating detailed reference maps like inventories or timber marking to support field operations. In this context, the use of direct visual interpretation is interesting, because it is much easier to implement than automatic algorithms and allows a quick and reliable identification of zonal (e.g. forest edge, deciduous/persistent ratio), structural (stratification) and point (e.g. tree/stem position and height) features. This article examines three important points which determine the relevance of visual interpretation: acquisition parameters, interactive representation and identification of forest characteristics. It is shown that the use of thematic color maps within interactive 3D point cloud and/or cross-sections makes it possible to establish (for all strata) detailed and accurate maps of a parcel at the individual tree scale.


Shore & Beach ◽  
2019 ◽  
pp. 3-14 ◽  
Author(s):  
Joshua Davis ◽  
Diana Mitsova ◽  
Tynon Briggs ◽  
Tiffany Briggs

Wave forcing from hurricanes, nor’easters, and energetic storms can cause erosion of the berm and beach face resulting in increased vulnerability of dunes and coastal infrastructure. LIDAR or other surveying techniques have quantified post-event morphology, but there is a lack of in situ hydrodynamic and morphodynamic measurements during extreme storm events. Two field studies were conducted in March 2018 and April 2019 at Bethany Beach, Delaware, where in situ hydrodynamic and morphodynamic measurements were made during a nor’easter (Nor’easter Riley) and an energetic storm (Easter Eve Storm). An array of sensors to measure water velocity, water depth, water elevation and bed elevation were mounted to scaffold pipes and deployed in a single cross-shore transect. Water velocity was measured using an electro-magnetic current meter while water and bed elevations were measured using an acoustic distance meter along with an algorithm to differentiate between the water and bed during swash processes. GPS profiles of the beach face were measured during every day-time low tide throughout the storm events. Both accretion and erosion were measured at different cross-shore positions and at different times during the storm events. Morphodynamic change along the back-beach was found to be related to berm erosion, suggesting an important morphologic feedback mechanism. Accumulated wave energy and wave energy flux per unit area between Nor’easter Riley and a recent mid-Atlantic hurricane (Hurricane Dorian) were calculated and compared. Coastal Observations: JALBTCX/NCMP emergency-response airborne Lidar coastal mapping & quick response data products for 2016/2017/2018 hurricane impact assessments


Sign in / Sign up

Export Citation Format

Share Document