scholarly journals Two-dimensional imaging of soot volume fraction in laminar diffusion flames

1999 ◽  
Vol 38 (12) ◽  
pp. 2478 ◽  
Author(s):  
David R. Snelling ◽  
Kevin A. Thomson ◽  
Gregory J. Smallwood ◽  
Ömer L. Gülder
2021 ◽  
Author(s):  
Nemanja Ceranic

Soot models have been investigated for several decades and many fundamental models exist that prescribe soot formation in agreement with experiments and theories. However, due to the complex nature of soot formation, not all pathways have been fully characterized. This work has numerically studied the influence that aliphatic based inception models have on soot formation for coflow laminar diffusion flames. CoFlame is the in-house parallelized FORTRAN code that was used to conduct this research. It solves the combustion fluid dynamic conservation equations for a variety of coflow laminar diffusion flames. New soot inception models have been developed for specific aliphatics in conjunction with polycyclic aromatic hydrocarbon based inception. The purpose of these models was not to be completely fundamental in nature, but more so a proof-of-concept in that an aliphatic based mechanism could account for soot formation deficiencies that exist with just PAH based inception. The aliphatic based inception models show potential to enhance predicative capability by increasing the prediction of the soot volume fraction along the centerline without degrading the prediction along the pathline of maximum soot. Additionally, the surface reactivity that was used to achieve these results lied closer in the range of numerically derived optimal values as compared to the surface reactivity that was needed to match peak soot concentrations without the aliphatic based inception models.


2008 ◽  
Author(s):  
Hongsheng Guo ◽  
Stephanie Trottier ◽  
Matthew R. Johnson ◽  
Gregory J. Smallwood

The sooting propensity of laminar diffusion flames employing ethylene/methane mixture fuel is investigated by numerical simulation. Detailed gas phase chemistry and moments method are used to describe the chemical reaction process and soot particle dynamics, respectively. The numerical model captures the primary features experimentally observed previously. At constant temperatures of air and fuel mixture, both maximum soot volume fraction and soot yield monotonically decrease with increasing the fraction of carbon from methane in the fuel mixture. However, when the temperatures of air and fuel mixture are preheated so that the adiabatic temperatures of all flames are same, the variation of the maximum soot yield becomes higher than what would be expected from a linear combination of the flames of pure ethylene and pure methane, showing a synergistic phenomenon in soot formation. Further analysis of the details of the numerical results suggests that the synergistic phenomenon is caused by the combined effects of the variations in the concentrations of acetylene (C2H2) and methyl radical (CH3). When the fraction of carbon from methane in fuel mixture increases, the concentration of C2H2 monotonically decreases, whereas that of methyl radical increases, resulting in a synergistic phenomenon in the variation of propargyl (C3H3) radical concentration due to the reactions C2H2 + CH3 = PC3H4 + H and PC3H4 + H = C3H3 + H2. This synergistic phenomenon causes a qualitatively similar variation trend in the concentration of pyrene (A4) owing to the reaction paths C3H3 → A1 (benzene) → A2 (naphthalene) → A3 (phenanthrene) → A4. Consequently, the synergistic effect occurs for soot inception and PAH condensation rates, leading to the synergistic phenomenon in soot yield. The similar synergistic phenomenon is not observed in the variation of peak soot volume fraction, since the maximum surface growth rate monotonically decreases, as the fraction of carbon from methane in fuel mixture increases.


2013 ◽  
Vol 03 (04) ◽  
pp. 137-141 ◽  
Author(s):  
N. R. Caetano ◽  
F. M. Pereira ◽  
H. A. Vielmo ◽  
F. T. van der Lann

2021 ◽  
Author(s):  
Nemanja Ceranic

Soot models have been investigated for several decades and many fundamental models exist that prescribe soot formation in agreement with experiments and theories. However, due to the complex nature of soot formation, not all pathways have been fully characterized. This work has numerically studied the influence that aliphatic based inception models have on soot formation for coflow laminar diffusion flames. CoFlame is the in-house parallelized FORTRAN code that was used to conduct this research. It solves the combustion fluid dynamic conservation equations for a variety of coflow laminar diffusion flames. New soot inception models have been developed for specific aliphatics in conjunction with polycyclic aromatic hydrocarbon based inception. The purpose of these models was not to be completely fundamental in nature, but more so a proof-of-concept in that an aliphatic based mechanism could account for soot formation deficiencies that exist with just PAH based inception. The aliphatic based inception models show potential to enhance predicative capability by increasing the prediction of the soot volume fraction along the centerline without degrading the prediction along the pathline of maximum soot. Additionally, the surface reactivity that was used to achieve these results lied closer in the range of numerically derived optimal values as compared to the surface reactivity that was needed to match peak soot concentrations without the aliphatic based inception models.


2021 ◽  
Vol 11 (13) ◽  
pp. 5979
Author(s):  
Jiajie Yao ◽  
Jiahao Liu ◽  
Jian Wang

The effect of pressure on the flame’s physical structure and soot formation of the coflow propane—air laminar diffusion flames was studied experimentally at subatmospheric pressures from 30 to 101 kPa. Flames with a constant fuel mass flow rate combined with two different coflow air mass flow rates were investigated at different pressures. The spatially resolved relative soot volume fraction was measured using the laser-induced incandescence (LII) method. The height of the visible flame decreased moderately as the pressure (p) reduced from 101 to 30 kPa. The maximum flame diameter increased proportionally to pn , where the exponent changed from −0.4 to −0.52 as the air-to-fuel velocity ratio decreased from 1.0 to 0.5. Strong pressure dependence of the maximum relative soot volume fraction and the normalized maximum soot mass flow were observed and could be described by a power law relationship. However, a nonmonotonic dependence of soot formation on the air-to-fuel velocity ratio was observed at all the considered pressures.


Author(s):  
H. Sapmaz ◽  
C. Ghenai

Laser-Induced Incandescence (LII) is used in this study to measure soot volume fractions in steady and flickering ethylene diffusion flames burning at atmospheric pressure. Better understanding of flickering flame behavior also promises to improve understanding of turbulent combustion systems. A very-high-speed solenoid valve is used to force the fuel flow rate with frequencies between 10 Hz and 200 Hz with the same mean fuel flow rate of steady flame. Periodic flame flickers are captured by two-dimensional phase-locked emission and LII images for eight phases (0°–360°) covering each period. LII spectra scan for minimizing C2 swan band emission and broadband molecular florescence, a calibration procedure using extinction measurements, and corrections for laser extinction and LII signal trapping are carried out towards developing reliable LII for quantitative applications. A comparison between the steady and pulsed flames results and the effect of the oscillation frequency on soot volume fraction for the pulsed flames are presented.


Sign in / Sign up

Export Citation Format

Share Document