Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines

2002 ◽  
Vol 41 (24) ◽  
pp. 5002 ◽  
Author(s):  
Johan Hult ◽  
Mattias Richter ◽  
Jenny Nygren ◽  
Marcus Aldén ◽  
Anders Hultqvist ◽  
...  
2019 ◽  
Vol 16 (11) ◽  
pp. 4569-4572
Author(s):  
Lenar Ajratovich Galiullin ◽  
Rustam Asgatovich Valiev ◽  
Ilnar Ajratovich Galiullin

This article describes methods of development of technical diagnostic systems for internal combustion engines. The automotive industry plays a leading role in the economy of any state. The history of the development of the global automotive industry is closely linked with the development of many branches of engineering. So, by the beginning of the 20th century, the automobile industry began to consume half of the steel and iron produced, three-quarters of rubber and leather, a third part of nickel and aluminum, and a seventh part of wood and copper. Autobuilding came in first place in terms of production among other branches of engineering, began to have a serious impact on the economic life of states. By the beginning of World War I, the car park on the globe was about 2 million. Of these, 1.3 million were in the USA, 245 thousand in England, 100 thousand in France, 57 thousand in Austria-Hungary, 12 thousand—to Italy, 10 thousand—to the Russia.


Author(s):  
Charles E. A. Finney ◽  
K. Dean Edwards ◽  
Miroslav K. Stoyanov ◽  
Robert M. Wagner

Combustion instabilities in dilute internal combustion engines are manifest in cyclic variability (CV) in engine performance measures such as integrated heat release or shaft work. Understanding the factors leading to CV is important in model-based control, especially with high dilution where experimental studies have demonstrated that deterministic effects can become more prominent. Observation of enough consecutive engine cycles for significant statistical analysis is standard in experimental studies but is largely wanting in numerical simulations because of the computational time required to compute hundreds or thousands of consecutive cycles. We have proposed and begun implementation of an alternative approach to allow rapid simulation of long series of engine dynamics based on a low-dimensional mapping of ensembles of single-cycle simulations which map input parameters to output engine performance. This paper details the use Titan at the Oak Ridge Leadership Computing Facility to investigate CV in a gasoline direct-injected spark-ignited engine with a moderately high rate of dilution achieved through external exhaust gas recirculation. The CONVERGE™ CFD software was used to perform single-cycle simulations with imposed variations of operating parameters and boundary conditions selected according to a sparse grid sampling of the parameter space. Using an uncertainty quantification technique, the sampling scheme is chosen similar to a design of experiments grid but uses algorithms designed to minimize the number of samples required to achieve a desired degree of accuracy. The simulations map input parameters to output metrics of engine performance for a single cycle, and by mapping over a large parameter space, results can be interpolated from within that space. This interpolation scheme forms the basis for a low-dimensional ‘metamodel’ (or model of a model) which can be used to mimic the dynamical behavior of corresponding high-dimensional simulations. Simulations of high-EGR spark-ignition combustion cycles within a parametric sampling grid were performed and analyzed statistically, and sensitivities of the physical factors leading to high CV are presented. With these results, the prospect of producing low-dimensional metamodels to describe engine dynamics at any point in the parameter space will be discussed. Additionally, modifications to the methodology to account for nondeterministic effects in the numerical solution environment are proposed.


Mining Revue ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 86-92
Author(s):  
Stefan Zaichenko ◽  
Ümran Erçetin ◽  
Roman Kulish ◽  
Denis Derevyanko ◽  
Vadim Shalenko

Abstract The presented article shows a method for finding monitored parameters for creating a diagnostic system for autonomous power sources based on spark ignition engines and diesel engines. The classification of structures of autonomous power sources based on internal combustion engines has been carried out. The analysis of the design features of the most common back-up power sources on the market based on internal combustion engines (ICE) indicates the widespread use of generators with a synchronous alternator. The analysis of the design features of autonomous power supplies has made it possible to develop logical models for different designs. The influence of the occurrence of a faulty state of each element on other elements of the systems is analyzed, and the results of the analysis are summarized in tables. An informative Claude Chenon criterion is proposed for finding the optimal number of diagnostic parameters among an infinite number of possible combinations of physical parameters that characterize the system. When solving the problem, a hypothesis was proposed about the equiprobability of cases of exit from the working state of each of the elements of the system. The use of Claude Chenon allows you to find the parts that make up the generators, which with maximum efficiency reduce the degree of uncertainty in the system. After determining the residual entropy, the parts of the system are selected, the state of which should be monitored by the diagnostic system. For such parts of the system, diagnostic parameters are found and methods for obtaining them are indicated.


2021 ◽  
pp. 73-79
Author(s):  
D.V. Kurnosenko ◽  
V.P. Savchuk ◽  
E.V. Belousov ◽  
А.К. Dzygar ◽  
A.I. Kotov

The issues of studying the operating parameters of the elements of lubrication systems for high-speed internal combustion engines preceded the creation of the stand. The engine lubrication system D-246.4 was chosen as a prototype. With the help of this stand it became possible to study the lubrication system for the following characteristics: change the performance of the engine oil pump D-246.4, change and control the engine oil temperature, control the pressure drop on the oil filter, control the engine oil flow, throttle oil at the inlet to the oil pump and on the conditional supply line to the friction units, measuring the vacuum of the system on the suction of the oil pump and recording the parameters of the pulsation of the oil pressure generated by the oil pump. To build mathematical models of the components in the lubrication systems of marine internal combustion engines there is a need to determine their operating parameters. In real operating conditions, such measurements cannot be obtained due to the lack of the necessary test equipment (TE) and the possibility of its installation. The authors describe in detail all the components of the stand for studying the parameters of the elements of lubrication systems of high-speed internal combustion engines, their technical characteristics, describes the diagnostic complex, which recorded the results of research, the results of measuring engine oil pressure pulsation. The stand is used to study the operating parameters of the oil pump and filter used for water. Signals are registered using the Autoscanner diagnostic system. The diagnostic complex is a 64-channel oscilloscope that is connected to a personal computer. This stand for studying the operating parameters of the elements of the lubrication system provides sufficient opportunities to simulate the operating conditions of the elements of the supply and purification of oil and register them both visually and with digital sensors and diagnostic system Autoscanner, digital oscilloscopes or other measuring instruments capable of recording and storing the received data.


Sign in / Sign up

Export Citation Format

Share Document