Ultra-narrow band near infrared tunable two-dimensional perfect absorber for refractive index sensing

2021 ◽  
Author(s):  
xing huang ◽  
Tao Wang ◽  
Ruoqin Yan ◽  
Xiaoyun Jiang ◽  
Xinzhao Yue ◽  
...  
2020 ◽  
Vol 12 (3) ◽  
pp. 88
Author(s):  
Muhammad Ali Butt ◽  
Nikolai Lvovich Kazansky

We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF ReferencesY. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, "Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, "Electrically tunable perfect light absorbers as color filters and modulators", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, "Electro-optical switch based on continuous metasurface embedded in Si substrate", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, "Broadband metasurface solar absorber in the visible and near-infrared region", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, "All-dielectric ultra-thin metasurface angular filter", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., "Broadband Metamaterial Absorbers", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., "Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, "Supersensitive and Tunable Nano-Biosensor for Cancer Detection", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef


Author(s):  
Zhiyou Li ◽  
Zao Yi ◽  
Tinting Liu ◽  
Li Liu ◽  
Xifang Chen ◽  
...  

In this paper, we designed a three-band narrowband perfect absorber based on Bulk Dirac semimetallic (BDS) metamaterials. The absorber consists of a hollow Dirac semimetallic layer above, a gold layer...


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Zhendong Yan ◽  
Chaojun Tang ◽  
Guohua Wu ◽  
Yumei Tang ◽  
Ping Gu ◽  
...  

Achieving perfect electromagnetic wave absorption with a sub-nanometer bandwidth is challenging, which, however, is desired for high-performance refractive-index sensing. In this work, we theoretically study metasurfaces for sensing applications based on an ultra-narrow band perfect absorption in the infrared region, whose full width at half maximum (FWHM) is only 1.74 nm. The studied metasurfaces are composed of a periodic array of cross-shaped holes in a silver substrate. The ultra-narrow band perfect absorption is related to a hybrid mode, whose physical mechanism is revealed by using a coupling model of two oscillators. The hybrid mode results from the strong coupling between the magnetic resonances in individual cross-shaped holes and the surface plasmon polaritons on the top surface of the silver substrate. Two conventional parameters, sensitivity (S) and figure of merit (FOM), are used to estimate the sensing performance, which are 1317 nm/RIU and 756, respectively. Such high-performance parameters suggest great potential for the application of label-free biosensing.


2020 ◽  
Vol 10 (4) ◽  
pp. 375-386 ◽  
Author(s):  
Jiankai Zhu ◽  
Xiangxian Wang ◽  
Yuan Wu ◽  
Yingwen Su ◽  
Tianxu Jia ◽  
...  

Abstract In this paper, we propose two kinds of composite structures based on the one- and two-dimensional (1D&2D) gold grating on a gold film for plasmonic refractive index sensing. The resonance modes and sensing characteristics of the composite structures are numerically simulated by the finite-difference time-domain method. The composite structure of the 1D gold semi-cylinder grating and gold film is analyzed first, and the optimized parameters of the grating period are obtained. The sensitivity and figure of merit (FOM) can reach 660RIU/nm and 169RIU−1, respectively. Then, we replace the 1D grating with the 2D gold semi-sphere particles array and find that the 2D grating composite structure can excite strong surface plasmon resonance intensity in a wider period range. The sensitivity and FOM of the improved composite structure can reach 985RIU/nm and 298 RIU−1, respectively. At last, the comparison results of the sensing performance of the two structures are discussed. The proposed structures can be used for bio-chemical refractive index sensing.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7452
Author(s):  
Muhammad A. Butt ◽  
Andrzej Kaźmierczak ◽  
Cuma Tyszkiewicz ◽  
Paweł Karasiński ◽  
Ryszard Piramidowicz

In this paper, a novel and cost-effective photonic platform based on silica–titania material is discussed. The silica–titania thin films were grown utilizing the sol–gel dip-coating method and characterized with the help of the prism-insertion technique. Afterwards, the mode sensitivity analysis of the silica–titania ridge waveguide is investigated via the finite element method. Silica–titania waveguide systems are highly attractive due to their ease of development, low fabrication cost, low propagation losses and operation in both visible and near-infrared wavelength ranges. Finally, a ring resonator (RR) sensor device was modelled for refractive index sensing applications, offering a sensitivity of 230 nm/RIU, a figure of merit (FOM) of 418.2 RIU−1, and Q-factor of 2247.5 at the improved geometric parameters. We believe that the abovementioned integrated photonics platform is highly suitable for high-performance and economically reasonable optical sensing devices.


1979 ◽  
Vol 47 ◽  
pp. 347-373
Author(s):  
Robert F. Wing

AbstractAs a classification technique, photoelectric narrow-band photometry is especially effective in the case of late-type spectra, in which molecular bands furnish the most sensitive criteria. Measurements of molecular bands with bandpasses of about 50 Å can be made very efficiently, and for normal stars they can be calibrated in terms of temperature and luminosity. In the case of normal late-type giants and supergiants, two-dimensional classifications can be obtained from measurements of TiO and CN; for very cool giants and for dwarfs it is useful siso to measure VO and CaH, respectively. All these molecules have bands in the red and near-infrared spectral regions, where cool stars are relatively bright and where photometric accuracy is highest.


2016 ◽  
Vol 53 ◽  
pp. 195-200 ◽  
Author(s):  
Yongzhi Cheng ◽  
Xue Song Mao ◽  
Chenjun Wu ◽  
Lin Wu ◽  
RongZhou Gong

2021 ◽  
Vol 2011 (1) ◽  
pp. 012059
Author(s):  
Ling Guo ◽  
Mengran Guo ◽  
Yajie Liu ◽  
Shan Yin

Sign in / Sign up

Export Citation Format

Share Document