Gold-viral particle identification by deeplearning in wide-field photon scatteringparametric images

2021 ◽  
Author(s):  
Hanwen Zhao ◽  
Bin Ni ◽  
Xiao Jin ◽  
Heng Zhang ◽  
Jamie Hou ◽  
...  
2021 ◽  
pp. 127463
Author(s):  
Hanwen Zhao ◽  
Bin Ni ◽  
WeiPing Liu ◽  
Xiao Jin ◽  
Heng Zhang ◽  
...  

Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
M. G. Lagally

It has been recognized since the earliest days of crystal growth that kinetic processes of all Kinds control the nature of the growth. As the technology of crystal growth has become ever more refined, with the advent of such atomistic processes as molecular beam epitaxy, chemical vapor deposition, sputter deposition, and plasma enhanced techniques for the creation of “crystals” as little as one or a few atomic layers thick, multilayer structures, and novel materials combinations, the need to understand the mechanisms controlling the growth process is becoming more critical. Unfortunately, available techniques have not lent themselves well to obtaining a truly microscopic picture of such processes. Because of its atomic resolution on the one hand, and the achievable wide field of view on the other (of the order of micrometers) scanning tunneling microscopy (STM) gives us this opportunity. In this talk, we briefly review the types of growth kinetics measurements that can be made using STM. The use of STM for studies of kinetics is one of the more recent applications of what is itself still a very young field.


2013 ◽  
Vol 183 (8) ◽  
pp. 888-894
Author(s):  
G.M. Beskin ◽  
S.V. Karpov ◽  
V.L. Plokhotnichenko ◽  
S.F. Bondar ◽  
A.V. Perkov ◽  
...  

2010 ◽  
Vol 180 (4) ◽  
pp. 424 ◽  
Author(s):  
G.M. Beskin ◽  
S.V. Karpov ◽  
S.F. Bondar ◽  
V.L. Plokhotnichenko ◽  
A. Guarnieri ◽  
...  

1977 ◽  
Vol 16 (2) ◽  
pp. 220-222
Author(s):  
Zeba A. Sathar

The book covers a wide field, touching on almost all aspects of popula¬tion change on a world-wide scale. It discusses, using world and country data, the relationships between demographic and socio-economic variables, and elaborates on" their relative importance in the determination of population problems which confront the world as a whole and nations individually. Policies designed to alleviate these problems are discussed with an emphasis on those related to population control. The first chapter is entitled "Population Growth: Past and Prospective" and reviews the various parameters associated with population change in the past and in the future. It touches upon the concept of a stable population in order to show the elements which cause a population to change (i.e. remove it from its stable condition). The main elements of change, population growth, migration, mortality and natality are discussed individually. The chapter is concluded by a description of the main differences in these elements and other socio-economic conditions as they exist in the less-developed and developed countries.


2019 ◽  
pp. 91-94
Author(s):  
T. M. Lysenko ◽  
V. Yu. Neshatayeva ◽  
Z. V. Dutova

The International conference “Flora and conservation in the Caucasus: history and current state of knowledge” dedicated to the 130-year anniversary of the Perkalsky Arboretum took place at 22–25 of May 2019 in Pyatigorsk (Stavropol Territory) on the base of the Pyatigorsk Museum of local lore and natural history. The participants were from 11 cities of Russia and 7 Republics of the Caucasus and represented 14 institutions. Proceedings of the conference were published by the beginning of the meeting the book of abstracts includes 49 papers on the study of vascular plants, bryophytes, lichens and fungi, plant communities, as well as the protection of rare and endangered species, unique plant communities, and ecological problems in the Caucasus. The following geobotanical topics were highlighted in 13 papers: forest communities (3 reports), meadow and steppe vegetation (2), xeric open forests (2), communities of ecotone areas (1), structure of populations of rare plant species (3), as well as the history and current status of nature protected areas (2). The great emphasis has been focused on the study of floristic composition and plant populations. Thus, the conference showed that very few studies от vegetation are currently carried out in the Caucasus, and a lot of districts are not affected by the research. The greatest attention is paid to forest vegetation while meadow, steppe, alpine heath and xerophytic communities are studied rather poorly. Besides, there are “white spots” — mire, floodplain and aquatic vegetation. In nowadays, when the anthropogenic impact on the plant cover of the Caucasus is intensively increasing, it is especially important to study natural undisturbed communities preserved in protected natural areas. Another important issue is the conservation of the unique vegetation cover of the whole Caucasus. Thus, the study of vegetation of this region opens a wide field for researchers using various methods of modern plant science.


Sign in / Sign up

Export Citation Format

Share Document