Structural design method of the meridional lobster-eye lens with optimal efficiency

2019 ◽  
Vol 58 (33) ◽  
pp. 9033 ◽  
Author(s):  
Mingzhao Ouyang ◽  
Xuan Zhao ◽  
Wenjun He ◽  
L. Yang ◽  
Yuan Hu ◽  
...  
2005 ◽  
Vol 8 (3) ◽  
pp. 247-257 ◽  
Author(s):  
Y. Fukumoto ◽  
T. Takaku ◽  
T. Aoki ◽  
K. A. S. Susantha

This paper presents the innovative use of hot-rolled thickness-tapered mill products, longitudinally profiled (LP) plates, for the seismic performance of bridge bents of single and portal framed piers. The study involves the inelastic cyclic testing and numerical analysis of tested beam-columns and portal frames in order to evaluate the effects of tapering ratios of LP plates, penetration of yielding, and number of locally buckled panels on their structural ductility. A structural design method is proposed for the portal frames having LP panels under cyclic loadings.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Kleio Avrithi ◽  
Bilal M. Ayyub

Nuclear safety-piping is designed according to the ASME Boiler and Pressure Vessel Code, Sections III, NB-, NC-, and ND-3600 that use the allowable stress design method (ASD). The potential use instead of reliability-based design equations for nuclear piping could benefit the structural design by providing, among others, consistent reliability levels for piping. For the development of such equations, not only the probabilistic characteristics of the design variables are needed, but also the quantification of the uncertainties introduced by the strength models that are used in order to estimate the resistance of pipes subjected to different loadings. This paper evaluates strength models, and therefore provides necessary information for the reliability-based design of pipes for burst or yielding due to internal pressure and for excessive bending.


Author(s):  
Yunwen Feng ◽  
Jiale Zhang ◽  
Xiaofeng Xue ◽  
Xiaoping Zhong ◽  
Wei Xie

Aircraft lug joint is the key part of load transfer. In order to improve the safety of lug joint, on the premise of meeting the design requirements of static strength and fatigue, the composite connection lug structure design technology of different metal materials is proposed in this paper. Firstly, the damage safety design and life reliability analysis of the lug structure are studied theoretically. Secondly, based on the concept of damage safety design and the design principle of deformation coordination, the design method of composite connection lug with deformation coordination is proposed, and the thickness ratio of single ear is 0.8:1:0.8. Finally, the reliability of the composite lug is analyzed. The results show that the structural design scheme of aluminum-titanium composite ear piece can meet the requirements of static strength and damage tolerance, and compared with the conventional ear structure, the failure probability of structure mission life is greatly reduced when the weight of the composite connection lug is only increased by 4.9%. The proposed method can effectively guide the structural design of composite ear piece.


2020 ◽  
Vol 198 ◽  
pp. 03011
Author(s):  
Wang Hongyan ◽  
Zhang Zihong

BIM is a data tool used in various stages of design, construction and management. It can integrate different models of buildings and realize sharing and transmission during the life cycle of the project, ensuring that engineering technicians can access different building information with a correct understanding and real-time response, it lays a good foundation for different participants including design, construction and management to achieve collaborative work. It is very important whether it is to ensure production efficiency, save costs and shorten construction periods. For the newly emerging prefabricated buildings, their structural design will become more efficient, accurate and reasonable due to the introduction of BIM technology.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983413
Author(s):  
Qisong Qi ◽  
Qing Dong ◽  
Yunsheng Xin

The nominal values of structural design parameters are usually calculated using a traditional deterministic optimization design method. However, owing to the failure of this type of method to consider potential variations in design parameters, the theoretical design results can be far from reality. To address this problem, the specular reflection algorithm, a recent advancement in intelligence optimization, is used in conjunction with a robust design method based on sensitivity. This method not only is able to fully consider the influence of parameter uncertainty on the design results but also has strong applicability. The effectiveness of the proposed method is verified by numerical examples, and the results show that the robust design method can significantly improve the reliability of the structure.


2011 ◽  
Vol 368-373 ◽  
pp. 2364-2368
Author(s):  
Jia Nian He ◽  
Zhan Wang

In structure design, for expressions with partial safety factors, partial safety factors and nominal value of loads are calculated based on the presupposition that the design reference period is 50 years. When the design reference period is not 50 years, it would cause unclear reliability of building structure by using expressions with partial safety factors following correlative codes yet. It may lead to hidden dangers in that way. In order to derive expressions with partial safety factors suitable for any design reference period, two useful methods are shown in this paper, modification of partial safety factors and modification of importance factor of structures. From results of analysis, we get the conclusions that it can assure the reliability index of the expression using the method of modification of partial safety factors, and the method of modification of importance factor of structures is very simple, but cannot assure the reliability index of the expression.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
K. J. Jenkins ◽  
C. E. Rudman ◽  
C. R. Bierman

The evolution of cold recycling using bitumen stabilisation technology has been supported by progressive research initiatives and best practice guidelines. The first generic guidelines for bitumen stabilised materials (BSMs) were published only in 2002. These guidelines provided a generic approach for the analysis of foamed bitumen and bitumen emulsion technologies. From that point, bitumen stabilisation became the common term for the inclusion of either of the two bituminous binders. The TG2 2nd edition guideline of 2009 took a bold step recognising the shear properties of the bitumen stabilised material (BSM) as the key performance indicators. In addition, advancements in structural design and application of BSMs provided practitioners with robust guidelines. The subsequent decade has provided an opportunity to interrogate data from more than 300 BSM mix designs and 69 LTPP sections. The data have led to research developments including significant new performance properties of BSMs, refined mix design methods, and updated new pavement design methods. This includes an entire design process that has been updated with a streamlined mix design procedure and a new frontier curve for the pavement number design method, as well as a new mechanistic design function. It is anticipated that the research findings and implementation of the newly developed technology will lead to improved application in BSM technology.


Sign in / Sign up

Export Citation Format

Share Document