MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

2018 ◽  
Vol 18 (5) ◽  
pp. 1598-1606 ◽  
Author(s):  
Hyun-Su Kim ◽  
Joo-Won Kang
2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Yilun Liu ◽  
Lei Zuo

This paper proposes a new integrated design method to simultaneously optimize the coupled structural parameters and controllers of mechanical systems by combining decentralized control techniques and Riccati-based control theories. The proposed integrated design method aims at minimizing the closed-loop H2 norm from the disturbance to the system cost. In this paper, the integrated design problems have been formulated in the cases of full state-feedback controllers and full order output-feedback controllers. We extend the current linear time invariant (LTI) control system to a more general framework suitable for the needs of integrated design, where the structural design is treated as a passive control optimization tackled by decentralized control techniques with static output feedback, while the active controller is optimized by solving modified Riccati equations. By using this dual-loop control system framework, the original integrated design problem is transferred to a constrained structural design problem with some additional Riccati-equation based constraints simultaneously integrating the controller synthesis. This reduces the independent design variables from the structural design parameters and the parameters of the controller to the structural design parameters only. As a result, the optimization efficiency is significantly improved. Then the constrained structural design problem is reformed as an unconstrained optimization problem by introducing Lagrange multipliers and a Lagrange function. The corresponding optimal conditions for the integrated design are also derived, which can be efficiently solved by gradient-based optimization algorithms. Later, two design examples, an active–passive vehicle suspension system and an active–passive tuned mass damper (TMD) system, are presented. The improvement of the overall system performance is also presented in comparison with conventional design methods.


2005 ◽  
Vol 8 (3) ◽  
pp. 247-257 ◽  
Author(s):  
Y. Fukumoto ◽  
T. Takaku ◽  
T. Aoki ◽  
K. A. S. Susantha

This paper presents the innovative use of hot-rolled thickness-tapered mill products, longitudinally profiled (LP) plates, for the seismic performance of bridge bents of single and portal framed piers. The study involves the inelastic cyclic testing and numerical analysis of tested beam-columns and portal frames in order to evaluate the effects of tapering ratios of LP plates, penetration of yielding, and number of locally buckled panels on their structural ductility. A structural design method is proposed for the portal frames having LP panels under cyclic loadings.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


Author(s):  
Mitsuo Hirata ◽  
Akiyo Murase ◽  
Takenori Atsumi ◽  
Kenzo Nonami

Abstract It has been proposed the design method of the two-degree-of-freedom (TDOF) controller which use the dynamical model of the feedback controller. In this study, we apply this design method to the sampled-data control system. The TDOF controller is obtained so that the output of the TDOF system follows the output of the model transfer function considering the intersample behaviors.


Sign in / Sign up

Export Citation Format

Share Document