Non-contact method of thickness measurement for a transparent plate using a laser auto-focus scanning probe

2019 ◽  
Vol 58 (35) ◽  
pp. 9524
Author(s):  
Quangsang Vo ◽  
Yiting Duan ◽  
Xiaodong Zhang ◽  
Fengzhou Fang
2019 ◽  
Vol 34 (4) ◽  
pp. 442-452 ◽  
Author(s):  
Hyun Seok Jeong ◽  
Young Chan Ko ◽  
Hyoung-Jin Kim

Abstract Surface characterization is important and has many applications in the paper industry. It includes both surface roughness and surface friction. In determining the surface roughness of paper and paperboard, non-contact methods such as air-leak methods In characterizing the surface roughness of paper and paperboard, it has been a common practice that the average roughness with the coefficient of variation (COV) has been conventionally determined. This practice, however, this runs the risk of drawing wrong conclusions since two different surfaces having the same average roughness and COV can exhibit totally different properties. To avoid such mistake, a stylus-type contact method has been developed to determine surface roughness of paper and paperboard such as printing & writing (P&W), kraft and liners. In this method, surface roughness profile has been generated to determine its variability which has been defined as the mean deviation from the roughness average, referred to as MDRA. In determining the MDRA, it is noted that thickness measurement is not required. In this method, stylus shape and size, contact force of the stylus to the surface, scan speed and resolution have been identified as the key parameters of generating stable surface roughness profiles. It has been further identified that the optimal conditions on these parameters should depend on paper grade. It is suggested that a stylus-type contact method should be used to determine surface roughness of paper and paperboard to help determine their practical applications such as printing, coating and embossing.


2011 ◽  
Vol 50 (21) ◽  
pp. 4011 ◽  
Author(s):  
Wang-Tsung Wu ◽  
Hung-Chih Hsieh ◽  
Wei-Yao Chang ◽  
Yen-Liang Chen ◽  
Der-Chin Su

2004 ◽  
Vol 47 (4) ◽  
pp. 343-346 ◽  
Author(s):  
Zdeňka Zapletalová ◽  
Roman Kubínek ◽  
Milan Vůjtek ◽  
Radko Novotný

Atomic force microscopy (AFM) as one the technique of Scanning Probe Microscopy is useful for imaging of surface structure. This method can yield three-dimensional high-resolution topographic images of sample surfaces by using a scanning technique for conductors and insulators on atomic scale. It is based upon mapping of atomic-forces on a surface of an investigated sample. The method is useful not only in physics and chemistry; it can be also applied in biological fields. Special construction of AFM scanner enables to follow biological samples in liquid environments. Artifacts caused by dehydration of samples are removed this way. Dentin of human teeth is a vital hydrated tissue. It is strongly sensitive to dehydration and drying that are commonly used in preparation of samples in examinations by Scanning Electron Microscopy (SEM). We describe our experience in examination of dentin surfaces of extracted human third molars using contact method of AFM under moist conditions.


Author(s):  
N.J. Tao ◽  
J.A. DeRose ◽  
P.I. Oden ◽  
S.M. Lindsay

Clemmer and Beebe have pointed out that surface structures on graphite substrates can be misinterpreted as biopolymer images in STM experiments. We have been using electrochemical methods to react DNA fragments onto gold electrodes for STM and AFM imaging. The adsorbates produced in this way are only homogeneous in special circumstances. Searching an inhomogeneous substrate for ‘desired’ images limits the value of the data. Here, we report on a reversible method for imaging adsorbates. The molecules can be lifted onto and off the substrate during imaging. This leaves no doubt about the validity or statistical significance of the images. Furthermore, environmental effects (such as changes in electrolyte or surface charge) can be investigated easily.


Author(s):  
K. Teraoka ◽  
N. Kaneko ◽  
Y. Horikawa ◽  
T. Uchida ◽  
R. Matsuda ◽  
...  
Keyword(s):  

The aim of this study was to elucidate the role of the mitochondria as a store of calcium(Ca) under the condition of pathophysiological Ca overload induced by a rise in extracellular Ca concentration and the administration of isoproterenol.Eight rats were employed, and hearts were perfused as in the Langendorff method with Krebs-Henseleit solution gassed with 95% O2 and 5% CO2. Tow specimens were perfused with 2mM Ca for 30 min, and 2 were perfused with 5.5 mM Ca for 20 min. 4 specimens were perfused with 2 mM Ca for 5 min, and of these 4, 2 were infused with 10-7 mM/kg/min. isoproterenol for 5 min, and 2 were given a bolus injection of 3 x 10-7 mM isoproterenol. After rapid-cryofixation by the metal-mirror contact method with a Reichert-Jung KF80/MM80, and cryosectioning at -160 to -180° C with a Reichert-Jung Ultracut Fc-4E, ultrathin specimens (100nm) were free-ze-dreid for several hours at 10-5 Torr in the JEOL FD 7000, and mitochondrial Ca was determined by quantitative x-ray micranalysis (JEOL 1200EX, LINK AN 10000S).


Sign in / Sign up

Export Citation Format

Share Document