scholarly journals Examination of Dentin Surface Using AFM (Our Experience)

2004 ◽  
Vol 47 (4) ◽  
pp. 343-346 ◽  
Author(s):  
Zdeňka Zapletalová ◽  
Roman Kubínek ◽  
Milan Vůjtek ◽  
Radko Novotný

Atomic force microscopy (AFM) as one the technique of Scanning Probe Microscopy is useful for imaging of surface structure. This method can yield three-dimensional high-resolution topographic images of sample surfaces by using a scanning technique for conductors and insulators on atomic scale. It is based upon mapping of atomic-forces on a surface of an investigated sample. The method is useful not only in physics and chemistry; it can be also applied in biological fields. Special construction of AFM scanner enables to follow biological samples in liquid environments. Artifacts caused by dehydration of samples are removed this way. Dentin of human teeth is a vital hydrated tissue. It is strongly sensitive to dehydration and drying that are commonly used in preparation of samples in examinations by Scanning Electron Microscopy (SEM). We describe our experience in examination of dentin surfaces of extracted human third molars using contact method of AFM under moist conditions.

2021 ◽  
Vol 7 ◽  
Author(s):  
Céline Noël ◽  
Lennaert Wouters ◽  
Kristof Paredis ◽  
Umberto Celano ◽  
Thomas Hantschel

The ever-increasing complexity of semiconductor devices requires innovative three-dimensional materials characterization techniques for confined volumes. Multiple atomic force microscopy (AFM)-based methodologies, using a slice-and-measure approach have been proposed to meet this demand. They consist of scanning AFM probes that erode locally the sample’s material at a relatively high load while sensing with the secondary AFM channel, thus accessing in-depth information compared to the standard surface-limited analysis. Nonetheless, the rapid tip apex wear caused by the high forces involved, and the debris accumulation at the tip apex and inside/around the scan area, have been identified as major limitations to the accuracy and repeatability of the existing tomographic AFM sensing methods. Here we explore the use of oil as a suitable medium to overcome some of the issues such as the scan debris accumulation and the removal variability when working in air. We show how the use of oil preserves the tomographic operation while improving the efficiency in material removal for large depth sensing at a reduced debris accumulation. This is reported by comparing the results between air and oil environments, where the removal rate, depth accuracy, and tip-contamination are benchmarked. Finally, we provide the first demonstration of electrical AFM sensing using scanning spreading resistance microscopy (SSRM) in oil.


2017 ◽  
Vol 68 (11) ◽  
pp. 2700-2703 ◽  
Author(s):  
Kamel Earar ◽  
Vasile Iulian Antoniac ◽  
Sorana Baciu ◽  
Simion Bran ◽  
Florin Onisor ◽  
...  

This study examined and compared surface of human dentine after acidic etching with hydrogen peroxide, phosphoric acid liquid and gel. Surface demineralization of dentin is necessary for a strong bond of adhesive at dental surface. Split human teeth were used. After application of mentioned substances at dentin level measures of the contact angle and surface morphology were employed. Surface morphology was analyzed with the help of scanning electron microscopy and atomic force microscopy. Liquid phosphoric acid yielded highest demineralization showing better hydrophobicity than the rest, thus having more contact surface. Surface roughness are less evident and formed surface micropores of 4 �m remained open after wash and air dry providing better adhesive canalicular penetration and subsequent bond.


COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 1-21 ◽  
Author(s):  
XIAN NING XIE ◽  
HONG JING CHUNG ◽  
ANDREW THYE SHEN WEE

Nanotechnology is vital to the fabrication of integrated circuits, memory devices, display units, biochips and biosensors. Scanning probe microscope (SPM) has emerged to be a unique tool for materials structuring and patterning with atomic and molecular resolution. SPM includes scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In this chapter, we selectively discuss the atomic and molecular manipulation capabilities of STM nanolithography. As for AFM nanolithography, we focus on those nanopatterning techniques involving water and/or air when operated in ambient. The typical methods, mechanisms and applications of selected SPM nanolithographic techniques in nanoscale structuring and fabrication are reviewed.


1993 ◽  
Vol 318 ◽  
Author(s):  
James D. Kiely ◽  
Dawn A. Bonnell

ABSTRACTScanning Tunneling and Atomic Force Microscopy were used to characterize the topography of fractured Au /sapphire interfaces. Variance analysis which quantifies surface morphology was developed and applied to the characterization of the metal fracture surface of the metal/ceramic system. Fracture surface features related to plasticity were quantified and correlated to the fracture energy and energy release rate.


1996 ◽  
Vol 461 ◽  
Author(s):  
Ph. Leclère ◽  
J. M. Yu ◽  
R. Lazzaroni ◽  
Ph. Dubois ◽  
R. JéRôme ◽  
...  

ABSTRACTAtomic Force Microscopy with Phase Detection Imaging is used to study the surface microdomain morphology of thick (i.e., ca. 2 mm) films of triblock copolymers, such as polymethylmethacrylate - block - polybutadiene - block - polymethylmethacrylate copolymers prepared by a well-taylored two-step sequential copolymerization promoted by a 1,3-diisopropenylbenzene based difunctional anionie initiator. By means of this new scanning probe microscopy technique, it is shown that the surface exhibits a segregated microphase structure, corresponding to the different types of components predicted theoretically by thermodynamic processes. We investigate the relationships between the size and characteristics of the microdomain structure as a function of the molecular parameters of the constituent polymers. Our data illustrate the interest of Phase Detection Imaging in the elucidation of surface phase separation in block copolymers.


1999 ◽  
Vol 123 (1) ◽  
pp. 35-43 ◽  
Author(s):  
D. Croft ◽  
G. Shed ◽  
S. Devasia

This article studies ultra-high-precision positioning with piezoactuators and illustrates the results with an example Scanning Probe Microscopy (SPM) application. Loss of positioning precision in piezoactuators occurs (1) due to hysteresis during long range applications, (2) due to creep effects when positioning is needed over extended periods of time, and (3) due to induced vibrations during high-speed positioning. This loss in precision restricts the use of piezoactuators in high-speed positioning applications like SPM-based nanofabrication, and ultra-high-precision optical systems. An integrated inversion-based approach is presented in this article to compensate for all three adverse affects—creep, hysteresis, and vibrations. The method is applied to an Atomic Force Microscope (AFM) and experimental results are presented that demonstrate substantial improvements in positioning precision and operating speed.


2006 ◽  
Vol 59 (6) ◽  
pp. 359 ◽  
Author(s):  
Pall Thordarson ◽  
Rob Atkin ◽  
Wouter H. J. Kalle ◽  
Gregory G. Warr ◽  
Filip Braet

Scanning probe microscopy (SPM) techniques, including atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), have revolutionized our understanding of molecule–surface interactions. The high resolution and versatility of SPM techniques have helped elucidate the morphology of adsorbed surfactant layers, facilitated the study of electronically conductive single molecules and biomolecules connected to metal substrates, and allowed direct observation of real-time processes such as in situ DNA hybridization and drug–cell interactions. These examples illustrate the power that SPM possesses to study (bio)molecules on surfaces and will be discussed in depth in this review.


2011 ◽  
Vol 84-85 ◽  
pp. 392-395
Author(s):  
Agus Geter Edy Sutjipto ◽  
Waleed Fekry Faris ◽  
Erry Y.T. Adesta ◽  
Hafizah Hanim

The development of the various scanning probe microscopy techniques has revolutionized the study of surface structure up to atomic scale. Among these techniques, Nanoeducator as scanning force microscope or SFM has been developed to allow the accomplishment of various measuring techniques both for scanning tunneling microscope (STM) and non-contact atomic force microscope (AFM). However, there is no exact guidance how to fabricate cantilever to gather the good image. In order to achieve the better cantilever for students, this paper emphasizes on tip’s processing by altering etching length parameter as tip plays an important role to achieve better quality image during scanning operation. This paper also provides a guide for undergraduate student to know better about this machine as well as the principle behind it for them to acquire better quality image for their works. It was found that the number of turning of tungsten and etching time could produce good tip of cantilever. It is recommended for lecturers, students and technician to consider about turning and time of etching to produce a better tip of cantilever in Nanoeducator.


Sign in / Sign up

Export Citation Format

Share Document