High Vacuum Technique,—Experimental Study of Effect of Ionization on Pump Speeds

1929 ◽  
Vol 19 (3) ◽  
pp. 152 ◽  
Author(s):  
Chas. T. Knipp ◽  
P. C. Ludolph
Shinku ◽  
1968 ◽  
Vol 11 (1) ◽  
pp. 23-28
Author(s):  
Hiroshi NAKAGAWA ◽  
Kyon Ju CHIN ◽  
Yukio ISHIBE

TAPPI Journal ◽  
2017 ◽  
Vol 16 (08) ◽  
pp. 477-483 ◽  
Author(s):  
Bjorn Sjostrand ◽  
Christophe Barbier ◽  
Lars Nilsson

This investigation used numerical models to describe forming section sheet dewatering at the high vacuum suction boxes. Three different fabric structures were examined with numerical models for single-phase flow of air and for two-phase flow of air and water. This was done to evaluate how forming fabric structure influences sheet dewatering. The numerical models were compared with an experimental study of the same fabrics investigated on a laboratory suction box. The small differences in dewatering rate in the experimental study could be simulated with the models, which confirmed the validity of the models. This implies that these numerical models can be used to describe new fabrics and how they will respond in the papermaking process.


Shinku ◽  
1988 ◽  
Vol 31 (2) ◽  
pp. 94-99
Author(s):  
Toru KANAJI ◽  
Nobuo UEKI ◽  
Tatsuro HONDA ◽  
Hiroyuki NISHIMURA ◽  
Toshio URANO

Author(s):  
S. Basu ◽  
D. F. Parsons

We are approaching the invasiveness of cancer cells from the studies of their wet surface morphology which should distinguish them from their normal counterparts. In this report attempts have been made to provide physical basis and background work to a wet replication method with a differentially pumped hydration chamber (Fig. 1) (1,2), to apply this knowledge for obtaining replica of some specimens of known features (e.g. polystyrene latex) and finally to realize more specific problems and to improvize new methods and instrumentation for their rectification. In principle, the evaporant molecules penetrate through a pair of apertures (250, 350μ), through water vapors and is, then, deposited on the specimen. An intermediate chamber between the apertures is pumped independently of the high vacuum system. The size of the apertures is sufficiently small so that full saturated water vapor pressure is maintained near the specimen.


Author(s):  
George H. N. Riddle ◽  
Benjamin M. Siegel

A routine procedure for growing very thin graphite substrate films has been developed. The films are grown pyrolytically in an ultra-high vacuum chamber by exposing (111) epitaxial nickel films to carbon monoxide gas. The nickel serves as a catalyst for the disproportionation of CO through the reaction 2C0 → C + CO2. The nickel catalyst is prepared by evaporation onto artificial mica at 400°C and annealing for 1/2 hour at 600°C in vacuum. Exposure of the annealed nickel to 1 torr CO for 3 hours at 500°C results in the growth of very thin continuous graphite films. The graphite is stripped from its nickel substrate in acid and mounted on holey formvar support films for use as specimen substrates.The graphite films, self-supporting over formvar holes up to five microns in diameter, have been studied by bright and dark field electron microscopy, by electron diffraction, and have been shadowed to reveal their topography and thickness. The films consist of individual crystallites typically a micron across with their basal planes parallel to the surface but oriented in different, apparently random directions about the normal to the basal plane.


Author(s):  
R. H. Geiss ◽  
R. L. Ladd ◽  
K. R. Lawless

Detailed electron microscope and diffraction studies of the sub-oxides of vanadium have been reported by Cambini and co-workers, and an oxidation study, possibly complicated by carbon and/or nitrogen, has been published by Edington and Smallman. The results reported by these different authors are not in good agreement. For this study, high purity polycrystalline vanadium samples were electrochemically thinned in a dual jet polisher using a solution of 20% H2SO4, 80% CH3OH, and then oxidized in an ion-pumped ultra-high vacuum reactor system using spectroscopically pure oxygen. Samples were oxidized at 350°C and 100μ oxygen pressure for periods of 30,60,90 and 160 minutes. Since our primary interest is in the mechanism of the low pressure oxidation process, the oxidized samples were cooled rapidly and not homogenized. The specimens were then examined in the HVEM at voltages up to 500 kV, the higher voltages being necessary to examine thick sections for which the oxidation behavior was more characteristic of the bulk.


Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

We have long felt that some form of electronic information retrieval would be more desirable than conventional photographic methods in a high vacuum electron microscope for various reasons. The most obvious of these is the fact that with electronic data retrieval the major source of gas load is removed from the instrument. An equally important reason is that if any subsequent analysis of the data is to be made, a continuous record on magnetic tape gives a much larger quantity of data and gives it in a form far more satisfactory for subsequent processing.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
T. Mukai ◽  
T. E. Mitchell

Radiation-induced homogeneous precipitation in Ni-Be alloys was recently observed by high voltage electron microscopy. A coupling of interstitial flux with solute Be atoms is responsible for the precipitation. The present investigation further shows that precipitation is also induced at thin foil surfaces by electron irradiation under a high vacuum.


Sign in / Sign up

Export Citation Format

Share Document