Light propagation in variable-refractive-index materials with liquid-crystal-infiltrated microcavities

2003 ◽  
Vol 20 (11) ◽  
pp. 2123 ◽  
Author(s):  
Bin Wang ◽  
Philip J. Bos ◽  
Charles D. Hoke
2011 ◽  
Vol 497 ◽  
pp. 142-146
Author(s):  
Tomoyuki Sasaki ◽  
Kenta Miura ◽  
Hiroshi Ono ◽  
Osamu Hanaizumi

Light propagation in an optical waveguide fabricated by employing a dye-doped liquid crystal (DDLC) was observed. The propagation of a light signal in the waveguide was varied by irradiation with a control light whose wavelength was in the absorption band of the DDLC. By considering the photothermal effect of the DDLC, which enables the change of the refractive index due to temperature variation based on the absorption of light, we qualitatively explained the observed light propagation and demonstrated manipulation of the propagation.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7553
Author(s):  
Joanna Korec ◽  
Karol A. Stasiewicz ◽  
Katarzyna Garbat ◽  
Leszek R. Jaroszewicz

This paper is a continuation of previous work and shows the enhancement of the surface plasmon resonance effect in a tapered optical fiber device. The study investigated liquid crystal cells containing a tapered optical fiber covered with a silver nanolayer, surrounded by a low refractive index liquid crystal in terms of the properties of light propagation in the taper structure. Silver films with a thickness of d = 10 nm were deposited on the tapered waist area. Measurements were performed at room temperature; liquid crystal steering voltage U from 0 to 200 V, with and without any amplitude modulation with a frequency of f = 5 Hz, and the wavelength λ ranged from 550 to 1200 nm. A significant influence of the initial arrangement of liquid crystals molecules on light propagation was observed. Three types of liquid crystal cells—orthogonal, parallel, and twist—were considered. During the measurements, resonant peaks were obtained—the position of which can also be controlled by the type of liquid crystal cells and the steering voltage. Based on the obtained results, the best parameters, such as highest peak’s width reduction, and the highest SNR value were received for twisted cells. In addition, the present work was compared with the previous work and showed the possibility of improving properties of the manufactured probes, and consequently, the surface plasmon resonance effect. In the presented paper, the novelty is mainly focused on the used materials as well as suitable changes in applied technological parameters. In contrast to gold, silver is characterized by different optic and dielectric properties, e.g., refractive index, extension coefficient, and permittivity, which results in changes in the light propagation and the SPR wavelengths.


2019 ◽  
Vol 75 (1) ◽  
pp. 65-71
Author(s):  
Behrooz Rezaei ◽  
Ibrahim Halil Giden ◽  
Mohammad Sadegh Zakerhamidi ◽  
Amid Ranjkesh ◽  
Tae-Hoon Yoon

AbstractWe proposed a new method for designing graded index lens using liquid crystal infiltration into annular photonic crystals. Applying an external nonuniform voltage in the transverse direction perpendicular to the direction of light propagation yields different orientation of liquid crystal molecules inside the photonic crystal unit cells. As a result, a gradient refractive index was modulated. We numerically investigate focusing properties of the designed graded index structure using plane-wave expansion and finite-difference time-domain methods. The gradient refractive index profile was adjusted by varying the nonuniform voltage excitations, which consequently altered the focal distance of the graded index structure. A wide tuning range of 1856 nm was achieved for focal distance by the proposed graded index structure. This feature can be implemented for planning a flat lens with tunable focal distance based on electro-optic effect. These achievements may have future applications in some optical devices such as near-field imaging and scanning.


2015 ◽  
Vol 23 (4) ◽  
Author(s):  
K.A. Rutkowska ◽  
K. Milenko ◽  
O. Chojnowska ◽  
R. Dąbrowski ◽  
T.R. Woliński

AbstractIn this work studies on propagation properties of a microstructured polymer optical fibre infiltrated with a nematic liquid crystal are presented. Specifically, the influence of an infiltration method on the LC molecular alignment inside fibre air-channels and, thus, on light guidance is discussed. Switching between propagation mechanisms, namely the transition from modified total internal reflection (mTIR) to the photonic bandgap effect obtained by varying external temperature is also demonstrated.


2019 ◽  
Vol 46 (6) ◽  
pp. 913-919
Author(s):  
Lin ◽  
Kuo ◽  
Huang ◽  
Wu ◽  
Lin ◽  
...  

This paper investigates the photoinduced change of refractive index in dye (methyl red, MR)-doped blue phase (DDBP) cells by illumination of a pump beam. Through excitation of light irradiation with proper photon energy, MR can transform from trans-state to cis-state and successively diffuse and anisotropically adsorb on the inner glass substrate of the DDBP cell along the direction perpendicular to the polarisation of the pump beam. The adsorbed MR molecules can effectively rotate the orientation of the liquid crystal (LC) molecules and thereby modulate the effective refractive index of the DDBP cell. The SEM images of the adsorbed regions of the illuminated DDBP samples were also taken for discussing the relation between the pump intensity and the photoinduced birefringence.


Author(s):  
Nghia Quang Truong ◽  
Huong Tu Ngoc Nguyen

In this article, we introduce a new approach to receive general solutions which describe all of the properties of the light propagating across optical uniaxial crystals. In our approach we do not use the conception of refractive index ellipsoid as being done in references. The solutions are given in analytical expressions so we can handly calculate or writing a small program to compute these expressions.


2019 ◽  
Vol 47 (6) ◽  
pp. 882-894 ◽  
Author(s):  
Ying Guo ◽  
Jianshe Li ◽  
Shuguang Li ◽  
Yingchao Liu ◽  
Xiaojian Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document