Organic dyes concentration monitoring through an optical microfiber: Enabled by multi-walled carbon nanotubes

Author(s):  
Dandan SUN ◽  
Yaohui Hao ◽  
Yongming Fu ◽  
Jie Ma
NANO ◽  
2015 ◽  
Vol 10 (05) ◽  
pp. 1550065 ◽  
Author(s):  
Hui Huang ◽  
Jingang Yu ◽  
Wei Liu ◽  
Xinyu Jiang

In this study, amino-functionalized multi-walled carbon nanotubes ( MWCNTs - NH 2) were successfully synthesized via an improved method and used for removal of organic dyes in aqueous solution. The synthesized MWCNTs - NH 2 were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscope (SEM), etc. The adsorption capacity and selectivity of MWCNTs - NH 2 for organic dyes was evaluated using rhodamine B ( RhB ), malachite green (MG), methyl orange (MO) and congo red (CR) as models. The selective adsorption toward anionic dyes was found for the MWCNTs - NH 2, and MO was selected as a typical anionic dye to deeply investigate the adsorption kinetics, equilibrium isotherms and thermodynamic parameters of the adsorption process. The adsorption kinetics and equilibrium isotherms data fitted well with the pseudo-second-order kinetic equation and Langmuir isotherm model. The thermodynamics study revealed that the adsorption of MO onto MWCNTs - NH 2 was spontaneous, exothermic and physisorptive in nature. The results indicated that MWCNTs - NH 2 are promising nanomaterials for removal of anionic dyes from industrial wastewater.


Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Sign in / Sign up

Export Citation Format

Share Document