scholarly journals Sub-wavelength temperature probing in near-field laser heating by particles

2012 ◽  
Vol 20 (13) ◽  
pp. 14152 ◽  
Author(s):  
Xiaoduan Tang ◽  
Yanan Yue ◽  
Xiangwen Chen ◽  
Xinwei Wang
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sonakshi Arora ◽  
Thomas Bauer ◽  
René Barczyk ◽  
Ewold Verhagen ◽  
L. Kuipers

AbstractTopological on-chip photonics based on tailored photonic crystals (PhCs) that emulate quantum valley-Hall effects has recently gained widespread interest owing to its promise of robust unidirectional transport of classical and quantum information. We present a direct quantitative evaluation of topological photonic edge eigenstates and their transport properties in the telecom wavelength range using phase-resolved near-field optical microscopy. Experimentally visualizing the detailed sub-wavelength structure of these modes propagating along the interface between two topologically non-trivial mirror-symmetric lattices allows us to map their dispersion relation and differentiate between the contributions of several higher-order Bloch harmonics. Selective probing of forward- and backward-propagating modes as defined by their phase velocities enables direct quantification of topological robustness. Studying near-field propagation in controlled defects allows us to extract upper limits of topological protection in on-chip photonic systems in comparison with conventional PhC waveguides. We find that protected edge states are two orders of magnitude more robust than modes of conventional PhC waveguides. This direct experimental quantification of topological robustness comprises a crucial step toward the application of topologically protected guiding in integrated photonics, allowing for unprecedented error-free photonic quantum networks.


APL Photonics ◽  
2017 ◽  
Vol 2 (2) ◽  
pp. 021301 ◽  
Author(s):  
Brian T. O’Callahan ◽  
Markus B. Raschke

1999 ◽  
Vol 5 (S2) ◽  
pp. 976-977
Author(s):  
M. Raval ◽  
D. Klenerman ◽  
T. Rayment ◽  
Y. Korchev ◽  
M. Lab

It is important to be able to image biological samples in a manner that is non-invasive and allows the sample to retain its functionality during imaging.A member of the SPM (scanning probe microscopy) family, SNOM (scanning near-field optical microscopy), has emerged as a technique that allows optical and topographic imaging of biological samples whilst satisfying the above stated criteria. The basic operating principle of SNOM is as follows. Light is coupled down a fibre-optic probe with an output aperture of sub-wavelength dimensions. The probe is then scanned over the sample surface from a distance that is approximately equal to the size of its aperture. By this apparently simple arrangement, the diffraction limit posed by conventional optical microscopy is overcome and simultaneous generation of optical and topographic images of sub-wavelength resolution is made possible. Spatial resolution values of lOOnm in air and 60nm in liquid[1,2] are achievable with SNOM.


Photonics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 22 ◽  
Author(s):  
George Keiser ◽  
Pernille Klarskov

This article reviews recent advances in terahertz science and technology that rely on confining the energy of incident terahertz radiation to small, very sub-wavelength sized regions. We focus on two broad areas of application for such field confinement: metamaterial-based nonlinear terahertz devices and terahertz near-field microscopy and spectroscopy techniques. In particular, we focus on field confinement in: terahertz nonlinear absorbers, metamaterial enhanced nonlinear terahertz spectroscopy, and in sub-wavelength terahertz imaging systems.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 3714-3725 ◽  
Author(s):  
Kuan-Wen Tung ◽  
Pei-Shan Chung ◽  
Cong Wu ◽  
Tianxing Man ◽  
Sidhant Tiwari ◽  
...  

This manuscript demonstrates a near-field acoustic platform to synthesize high resolution, complex and non-periodic energy potential wells for patterning micro-objects.


2014 ◽  
Vol 62 (7) ◽  
pp. 3543-3556 ◽  
Author(s):  
Alon Ludwig ◽  
Costas D. Sarris ◽  
George V. Eleftheriades

Author(s):  
Haseung Chung ◽  
Katsuo Kurabayashi ◽  
Suman Das

Solid immersion lenses (SIL) facilitate high numerical aperture (NA) and consequent sub-wavelength diffraction limited focusing in near-field optics based systems. Such systems are in commercial and research use for various applications including near-field scanning optical microscopy, ultra-high density magneto-optic data storage and near-field nanolithography. Here, we present a novel nanomanufacturing method using SIL-based near-field optics for laser-induced sub-micron patterning on silicon wafers. The near-field effect of SILs was investigated by using hemispherical BK7 lenses (n=1.5196, NA=0.9237) to superfocus an incident Q-switched, 532nm Nd:YAG laser beam transmitted through a focusing objective. This optical arrangement achieved a laser-processed feature resolution near the diffraction limit in air. Results of experiments that were conducted at various processing conditions to investigate the effects of varying incident laser power (with average pulse power less than 1W), pulse repetition rate, pulse width, number of pulses and size of SIL on processed feature size and resolution are presented.


Sign in / Sign up

Export Citation Format

Share Document