scholarly journals Using thermo-optical nonlinearity to robustly separate absorption and radiation losses in nanophotonic resonators

2021 ◽  
Vol 29 (5) ◽  
pp. 6967
Author(s):  
Mingkang Wang ◽  
Diego J. Perez-Morelo ◽  
Vladimir A. Aksyuk
2020 ◽  
Author(s):  
Zeyu Liu ◽  
Shugui Hua ◽  
Tian Lu ◽  
Ziqi Tian

Inspired by a previous experimental study on the first-order hyperpolarizabilities of 1,3-thiazolium-5-thiolates mesoionic compounds using Hyper-Rayleigh scattering technique, we theoretically investigated the UV-Vis absorption spectra and every order polarizabilities of these mesoionic molecules. Based on the fact that the photophysical and nonlinear properties observed in the experiment can be perfectly replicated, our theoretical calculations explored the essential characteristics of the optical properties of the mesoionic compounds with different electron-donating groups at the level of electronic structures through various wave function analysis methods. The influence of the electron-donating ability of the donor on the optical properties of the molecules and the contribution of the mesoionic ring moiety to their optical nonlinearity are clarified, which have not been reported by any research so far. This work will help people understand the nature of optical properties of mesoionic-based molecules and provide guidance for the rational design of molecules with excellent photoelectric performance in the future.


2012 ◽  
Vol 27 (3) ◽  
pp. 327-331
Author(s):  
Qiang LU ◽  
Fang-Ming CUI ◽  
Chen-Yang WEI ◽  
Zi-Le HUA ◽  
Chang-Qing DONG

1988 ◽  
Vol 24 (1) ◽  
pp. 17-19 ◽  
Author(s):  
M.S. Stern ◽  
P.C. Kendall ◽  
P.N. Robson

1975 ◽  
Vol 97 (1) ◽  
pp. 41-46 ◽  
Author(s):  
E. Pfender ◽  
J. Schafer

An improved analytical model for the description of the anode contraction zone of a high intensity arc takes radiation effects into account. The conservation equations for the anode contraction zone and the adjacent undisturbed arc column are solved numerically with a relaxation method. Results for atmospheric pressure argon arcs at three different currents demonstrate that radiation losses reduce temperature peaks substantially and, at the same time, provide a smooth matching of arc column and contraction zone solutions. Although the model seems to be adequate for a large portion of the anode contraction zone, the results indicate that refinements of the model are necessary for the region close to the anode, in particular, deviations from LTE have to be taken into account.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Lu ◽  
Qi Zhang ◽  
Qiang Wu ◽  
Zhigang Chen ◽  
Xueming Liu ◽  
...  

AbstractThe field of nonlinear optics has grown substantially in past decades, leading to tremendous progress in fundamental research and revolutionized applications. Traditionally, the optical nonlinearity for a light wave at frequencies beyond near-infrared is observed with very high peak intensity, as in most materials only the electronic nonlinearity dominates while ionic contribution is negligible. However, it was shown that the ionic contribution to nonlinearity can be much larger than the electronic one in microwave experiments. In the terahertz (THz) regime, phonon polariton may assist to substantially trigger the ionic nonlinearity of the crystals, so as to enhance even more the nonlinear optical susceptibility. Here, we experimentally demonstrate a giant second-order optical nonlinearity at THz frequency, orders of magnitude higher than that in the visible and microwave regimes. Different from previous work, the phonon-light coupling is achieved under a phase-matching setting, and the dynamic process of nonlinear THz generation is directly observed in a thin-film waveguide using a time-resolved imaging technique. Furthermore, a nonlinear modification to the Huang equations is proposed to explain the observed nonlinearity enhancement. This work brings about an effective approach to achieve high nonlinearity in ionic crystals, promising for applications in THz nonlinear technologies.


Author(s):  
Mingxiao Gao ◽  
Jiaxin Zhang ◽  
Xinyuan Zhang ◽  
Degang Xu ◽  
Zhanggui Hu ◽  
...  

Author(s):  
Tong Zhang ◽  
Hongwei Chu ◽  
Dong Li ◽  
Ying Li ◽  
Shengzhi Zhao ◽  
...  

In the present work, we synthesize a Fe3O4@Ti3C2 MXene hybrid nanomaterial. Comprehensive investigation on the morphology and structure of the prepared Fe3O4@Ti3C2 MXene demonstrates the strong interaction between Ti3C2 MXene...


2017 ◽  
Vol 26 (02) ◽  
pp. 1750025 ◽  
Author(s):  
M. K. Biswas ◽  
P. K. Das ◽  
E. Hoque ◽  
S. M. Sharafuddin ◽  
S. K. Das ◽  
...  

The present work studies the optical nonlinearity exhibited by the material (for Continuous Wave (CW) laser or long pulse) due to the change in thermal properties of the material on illumination. Thermal lens (TL) technique has been used to measure the refractive index change due to the formation of TL along with other thermo-optic properties of the material in solution. A CW Ar-ion laser has been used as light source and the laser beam was chopped at 25[Formula: see text]Hz frequency to obtain 12[Formula: see text]ms pulse to observe the formation of the TL within the sample. The [Formula: see text] value have been calculated by the TL technique for Benzene, Toluene and Dimethylaniline (DMA) in toluene and Benzene. The [Formula: see text] value is found to be in the order of 10[Formula: see text] to 10[Formula: see text][Formula: see text]cm2[Formula: see text]W[Formula: see text].


2011 ◽  
Vol 1314 ◽  
Author(s):  
Johannes de Boor ◽  
Volker Schmidt

AbstractWe have recently presented a novel method for a complete thermoelectric characterization [J. de Boor, V. Schmidt. Adv. Mater. 22:4303, (2010)]. This method is based on the well-known electrical van der Pauw method and allows measurement of the electrical and thermal conductivity, the Seebeck coefficient and the thermoelectric figure of merit. After a short review of this method we will discuss the systematic measurement errors of the method. It turns out that radiative heat loss can affect the thermal conductivity measurement significantly. We will give a simple estimation for the relative error due to radiation losses and discuss error minimizing strategies.


Sign in / Sign up

Export Citation Format

Share Document