Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber

1993 ◽  
Vol 18 (3) ◽  
pp. 185 ◽  
Author(s):  
Kaoru Shimizu ◽  
Tsuneo Horiguchi ◽  
Yahei Koyamada ◽  
Toshio Kurashima
2012 ◽  
Vol 571 ◽  
pp. 467-470 ◽  
Author(s):  
Jian Li ◽  
Nan Xu ◽  
Jian Wei Li ◽  
Zhi Xin Zhang

As an important parameter in the laser communication system, the narrow linewidth of tunable laser source (TLS) must be measured accurately. Therefore, the linewidth of a TLS was measured with the delayed self-heterodyne detection method in the present work. The total-reflected delay line was used in the measurement system for make full use of 25km single-mode fiber delay line. The measured linewidth of the 1550 TLS is of 127 kHz, in agreement with the nominal value.


1982 ◽  
Vol 41 (3) ◽  
pp. 164-168 ◽  
Author(s):  
P. Graindorge ◽  
K. Thyagarajan ◽  
H. Arditty ◽  
M. Papuchon

Author(s):  
Abdallah Zahidi ◽  
Amrane Said ◽  
Nawfel Azami ◽  
Naoual Nasser

Controlling the polarization of the light output from single-mode fiber systems is very important for connecting it to polarization-dependent integrated optical circuits, while applications using a heterodyne detection system. Polarization controller using fiber squeezer is attractive for a low-loss, low-penalty coherent optical fiber trunk system. However, for polarization controllers using electromagnetic fiber squeezer, the stability problem due to the saturation of their magnetic circuit must be studied. In fact, in their conventional configuration, open-loop stability affects performance and limits applications. First at all, this effect has been analyzed and a feedback circuit with correctors has been proposed to improve stability performance. Then a simulation study is proposed to examine the influence of the system parameters on the corrector constants. The results of the simulation show that if the system parameters change the constants Kp, Ki and Kd of the PID corrector must be adjusted to keep an optimized dynamic response.


2002 ◽  
Vol 722 ◽  
Author(s):  
T. S. Sriram ◽  
B. Strauss ◽  
S. Pappas ◽  
A. Baliga ◽  
A. Jean ◽  
...  

AbstractThis paper describes the results of extensive performance and reliability characterization of a silicon-based surface micro-machined tunable optical filter. The device comprises a high-finesse Fabry-Perot etalon with one flat and one curved dielectric mirror. The curved mirror is mounted on an electrostatically actuated silicon nitride membrane tethered to the substrate using silicon nitride posts. A voltage applied to the membrane allows the device to be tuned by adjusting the length of the cavity. The device is coupled optically to an input and an output single mode fiber inside a hermetic package. Extensive performance characterization (over operating temperature range) was performed on the packaged device. Parameters characterized included tuning characteristics, insertion loss, filter line-width and side mode suppression ratio. Reliability testing was performed by subjecting the MEMS structure to a very large number of actuations at an elevated temperature both inside the package and on a test board. The MEMS structure was found to be extremely robust, running trillions of actuations without failures. Package level reliability testing conforming to Telcordia standards indicated that key device parameters including insertion loss, filter line-width and tuning characteristics did not change measurably over the duration of the test.


2021 ◽  
Vol 395 ◽  
pp. 127226
Author(s):  
Jun Guo ◽  
Xiao Hu ◽  
Jie Ma ◽  
Luming Zhao ◽  
Deyuan Shen ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georg Rademacher ◽  
Benjamin J. Puttnam ◽  
Ruben S. Luís ◽  
Tobias A. Eriksson ◽  
Nicolas K. Fontaine ◽  
...  

AbstractData rates in optical fiber networks have increased exponentially over the past decades and core-networks are expected to operate in the peta-bit-per-second regime by 2030. As current single-mode fiber-based transmission systems are reaching their capacity limits, space-division multiplexing has been investigated as a means to increase the per-fiber capacity. Of all space-division multiplexing fibers proposed to date, multi-mode fibers have the highest spatial channel density, as signals traveling in orthogonal fiber modes share the same fiber-core. By combining a high mode-count multi-mode fiber with wideband wavelength-division multiplexing, we report a peta-bit-per-second class transmission demonstration in multi-mode fibers. This was enabled by combining three key technologies: a wideband optical comb-based transmitter to generate highly spectral efficient 64-quadrature-amplitude modulated signals between 1528 nm and 1610 nm wavelength, a broadband mode-multiplexer, based on multi-plane light conversion, and a 15-mode multi-mode fiber with optimized transmission characteristics for wideband operation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josu Amorebieta ◽  
Angel Ortega-Gomez ◽  
Gaizka Durana ◽  
Rubén Fernández ◽  
Enrique Antonio-Lopez ◽  
...  

AbstractWe propose and demonstrate a compact and simple vector bending sensor capable of distinguishing any direction and amplitude with high accuracy. The sensor consists of a short segment of asymmetric multicore fiber (MCF) fusion spliced to a standard single mode fiber. The reflection spectrum of such a structure shifts and shrinks in specific manners depending on the direction in which the MCF is bent. By monitoring simultaneously wavelength shift and light power variations, the amplitude and bend direction of the MCF can be unmistakably measured in any orientation, from 0° to 360°. The bending sensor proposed here is highly sensitive even for small bending angles (below 1°).


Sign in / Sign up

Export Citation Format

Share Document