Pattern dependent effect reduction in 3R regeneration using a three wavelength Sagnac interferometer

2001 ◽  
Author(s):  
Bing C. Wang ◽  
Lei Xu ◽  
Deyu Zhou ◽  
Robert J. Runser ◽  
Ivan Glesk ◽  
...  
2017 ◽  
Vol 137 (2) ◽  
pp. 147-153
Author(s):  
Akinori Hori ◽  
Hiroki Tanaka ◽  
Yuichiro Hayakawa ◽  
Hiroshi Shida ◽  
Keiji Kawahara ◽  
...  

2020 ◽  
Vol 18 (2) ◽  
pp. 63-72
Author(s):  
Mohd Aftab Alam ◽  
Fahad I. Al-Jenoobi ◽  
Khaled A. Alzahrani ◽  
Mohammad H. Al-Agamy ◽  
Abdullah M. Al-Mohizea

The aim of present study was to investigate the effect of pharmaceutical excipients and other active substances on antimicrobial efficacy of standard antibiotic against resistant and susceptible microorganisms. Pharmaceutical excipients (sodium lauryl sulfate [SLS], Tween-80, citric acid, NaOH, NaCl) and active substances (fusidic acid, sorbic acid) were investigated to check in-vitro efficacy and their effect on the efficacy of standard antibiotic. Clindamycin was selected as standard antibiotic. Clindamycin was found to be ineffective against methicillin-resistant Staphylococcus aureus (MRSA). Fusidic acid and SLS showed concentration dependent effect against MRSA. Other tested substances were also ineffective against MRSA, and also failed to improve the susceptibility of MRSA towards clindamycin. The clindamycin + fusidic acid (0.05 µg, 0.1 µg), and clindamycin + SLS (0.5 mg, 1 mg) showed concentration dependent effect on Staphylococcus epidermidis (S. epidermidis). Clindamycin combinations with fusidic acid or SLS showed better inhibition of S. epidermidis, than individual substance. At lower concentration of clindamycin (2 µg), the sorbic acid (25 µg) improves its effectiveness. SLS (0.5 mg, 1 mg) and clindamycin (4 µg, 10 µg) showed almost equal zone of inhibition against S. epidermidis, respectively. Present findings showed that certain pharmaceutical excipients (e.g. SLS) are effective against resistant and susceptible microbes, and suggested that more excipients should be screened for their antimicrobial potential and their ability to improve the efficacy of standard antibiotics.


2021 ◽  
Vol 534 ◽  
pp. 429-435
Author(s):  
Yihua Wang ◽  
Thomas P. Burghardt ◽  
Gregory A. Worrell ◽  
Hai-Long Wang

Author(s):  
Shiva Naseri ◽  
Gabriele Griffanti ◽  
William C. Lepry ◽  
Vimal B. Maisuria ◽  
Nathalie Tufenkji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document