Investigating Non-Therapeutic Pharmaceutical Substances for Improving In-Vitro Efficacy of Clindamycin Phosphate Against MRSA and Staphylococcus Epidermidis

2020 ◽  
Vol 18 (2) ◽  
pp. 63-72
Author(s):  
Mohd Aftab Alam ◽  
Fahad I. Al-Jenoobi ◽  
Khaled A. Alzahrani ◽  
Mohammad H. Al-Agamy ◽  
Abdullah M. Al-Mohizea

The aim of present study was to investigate the effect of pharmaceutical excipients and other active substances on antimicrobial efficacy of standard antibiotic against resistant and susceptible microorganisms. Pharmaceutical excipients (sodium lauryl sulfate [SLS], Tween-80, citric acid, NaOH, NaCl) and active substances (fusidic acid, sorbic acid) were investigated to check in-vitro efficacy and their effect on the efficacy of standard antibiotic. Clindamycin was selected as standard antibiotic. Clindamycin was found to be ineffective against methicillin-resistant Staphylococcus aureus (MRSA). Fusidic acid and SLS showed concentration dependent effect against MRSA. Other tested substances were also ineffective against MRSA, and also failed to improve the susceptibility of MRSA towards clindamycin. The clindamycin + fusidic acid (0.05 µg, 0.1 µg), and clindamycin + SLS (0.5 mg, 1 mg) showed concentration dependent effect on Staphylococcus epidermidis (S. epidermidis). Clindamycin combinations with fusidic acid or SLS showed better inhibition of S. epidermidis, than individual substance. At lower concentration of clindamycin (2 µg), the sorbic acid (25 µg) improves its effectiveness. SLS (0.5 mg, 1 mg) and clindamycin (4 µg, 10 µg) showed almost equal zone of inhibition against S. epidermidis, respectively. Present findings showed that certain pharmaceutical excipients (e.g. SLS) are effective against resistant and susceptible microbes, and suggested that more excipients should be screened for their antimicrobial potential and their ability to improve the efficacy of standard antibiotics.

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3345
Author(s):  
Taif Ali Khan ◽  
Abul Kalam Azad ◽  
Shivkanya Fuloria ◽  
Asif Nawaz ◽  
Vetriselvan Subramaniyan ◽  
...  

The purpose of the present study was to develop emulsions encapsulated by chitosan on the outer surface of a nano droplet containing 5-fluorouracil (5-FU) as a model drug. The emulsions were characterized in terms of size, pH and viscosity and were evaluated for their physicochemical properties such as drug release and skin permeation in vitro. The emulsions containing tween 80 (T80), sodium lauryl sulfate, span 20, and a combination of polyethylene glycol (PEG) and T20 exhibited a release of 88%, 86%, 90% and 92%, respectively. Chitosan-modified emulsions considerably controlled the release of 5-FU compared to a 5-FU solution (p < 0.05). All the formulations enabled transportation of 5-FU through a rat’s skin. The combination (T80, PEG) formulation showed a good penetration profile. Different surfactants showed variable degrees of skin drug retention. The ATR-FTIR spectrograms revealed that the emulsions mainly affected the fluidization of lipids and proteins of the stratum corneum (SC) that lead to enhanced drug permeation and retention across the skin. The present study concludes that the emulsions containing a combination of surfactants (Tween) and a co-surfactant (PEG) exhibited the best penetration profile, prevented the premature release of drugs from the nano droplet, enhanced the permeation and the retention of the drug across the skin and had great potential for transdermal drug delivery. Therefore, chitosan-coated 5-FU emulsions represent an excellent possibility to deliver a model drug as a transdermal delivery system.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 308 ◽  
Author(s):  
Sharif Abdelghany ◽  
Ismaiel A. Tekko ◽  
Lalitkumar Vora ◽  
Eneko Larrañeta ◽  
Andi Dian Permana ◽  
...  

The objective of this study was to evaluate the intradermal delivery of curcumin utilising poly(vinylalcohol) (PVA)-based microneedles loaded with curcumin nanosuspension (CU-NS). Nanoprecipitation was used to formulate the CU-NS which was then incorporated into PVA microneedles arrays consisting of 11 × 11 microneedles of conical shape, measuring 900 µm in height and with 300 µm base diameter. The nanosuspension particle size was 520 ± 40 nm, with a polydispersity of 0.27 ± 0.02 using sodium lauryl sulfate (SLS) as a stabiliser. In vitro dissolution studies in 10% w/v Tween 80 showed that the CU-NS dissolved significantly faster than unmodified curcumin powder, with 34% released from the CU-NS, compared to 16% from the curcumin powder after 48 h. The CU-NS-loaded microneedles (CU-MN) were able to withstand a compression force of 32 N for 30 s. Moreover, these microneedles were able to penetrate excised neonatal porcine skin to a depth of 500 µm, dissolved completely in the skin within 60 min. After CU-MN dissolution, the drug diffused from the application site and migrated through the skin layers down to 2300 µm, significantly more than observed with topical application of CU-NS. This suggest that the fabricated microneedles with the incorporated CU-NS could enhance the intradermal delivery of curcumin.


2014 ◽  
Vol 3 (12) ◽  
pp. 331-335 ◽  
Author(s):  
Shumaia Parvin ◽  
Md. Abu Shuaib Rafshanjani ◽  
Md. Abdul Kader

Dexamethasone is a type of steroid medication having anti-inflammatory and immunosuppressant effects. One of the major problems with this drug is its low solubility in water which results into poor bioavailability after oral administration. So the objective of the present work is to improve the solubility and dissolution rate of dexamethasone using its solid lipid nano particles (SLNPs) with stearic acid as solid lipid, lutrol F-68 as surfactant and tween-80 as stabilizer. SLNPs are prepared by hot homogenization method at different ratio of drug, lipid, surfactant and stabilizer and designated as DNP1 to DNP6. In vitro dissolution study was performed using the USP type II apparatus (paddle method) at 50 rpm to a temperature of 37°±0.5°C in distilled water containing 0.75% w/v SLS (sodium lauryl sulfate). The absorbance of sample was measured spectrophotometrically at ?max 239nm on a UV-Visible spectrophotometer. Release pattern of drug was found to follow zero order, first order and Korsmeyer-Peppas equations. Improvement of dissolution was observed in all the solid lipid nano particles as compared to pure drug. Pure drug showed only 27.25% release in 50 min whereas the dexamethasone SLNPs showed faster (66.19%) in vitro drug release. Hence, this finding indicates that dexamethasone SLNPs prepared by hot homogenization method can be used to enhance the dissolution rate and to show novel application to this drug delivery system.DOI: http://dx.doi.org/10.3329/icpj.v3i12.20829 International Current Pharmaceutical Journal, November 2014, 3(12): 331-335


Author(s):  
William J. Lamoreaux ◽  
David L. Smalley ◽  
Larry M. Baddour ◽  
Alfred P. Kraus

Infections associated with the use of intravascular devices have been documented and have been reported to be related to duration of catheter usage. Recently, Eaton et al. reported that Staphylococcus epidermidis may attach to silastic catheters used in continuous ambulatory peritoneal dialysis (CAPD) treatment. The following study presents findings using scanning electron microscopy (SEM) of S. epidermidis adherence to silastic catheters in an in vitro model. In addition, sections of polyvinyl chloride (PVC) dialysis bags were also evaluated by SEM.The S. epidermidis strain RP62A which had been obtained in a previous outbreak of coagulase-negative staphylococcal sepsis at local hospitals was used in these experiments. The strain produced surface slime on exposure to glucose, whereas a nonadherent variant RP62A-NA, which was also used in these studies, failed to produce slime. Strains were grown overnight on blood agar plates at 37°C, harvested from the surface and resuspended in sterile saline (0.85%), centrifuged (3,000 rpm for 10 minutes) and then washed twice in 0.1 M phosphate-buffered saline at pH 7.0. Organisms were resuspended at a concentration of ca. 106 CFU/ml in: a) sterile unused dianeal at 4.25% dextrose, b) sterile unused dianeal at 1.5% dextrose, c) sterile used dialysate previously containing 4.25% dextrose taken from a CAPD patient, and d) sterile used dialysate previously containing 1.5% dextrose taken from a CAPD patient.


1977 ◽  
Vol 38 (03) ◽  
pp. 0640-0651 ◽  
Author(s):  
B. V Chater ◽  
A. R Williams

SummaryPlatelets were found to aggregate spontaneously when exposed to ultrasound generated by a commercial therapeutic device. At a given frequency, aggregation was found to be a dose-related phenomenon, increasing intensities of ultrasound inducing more extensive and more rapid aggregation. At any single intensity, the extent aggregation was increased as the frequency of the applied ultrasound was decreased (from 3.0 to 0.75 MHz).Ultrasound-induced platelet aggregation was found to be related to overall platelet sensitivity to adenosine diphosphate. More sensitive platelets were found to aggregate spontaneously at lower intensities of sound, and also the maximum extent of aggregation was found to be greater. Examination of ultrasound-induced platelet aggregates by electron microscopy demonstrated that the platelets had undergone the release reaction.The observation that haemoglobin was released from erythrocytes in whole blood irradiated under identical physical conditions suggests that the platelets are being distrupted by ultrasonic cavitation (violent gas/bubble oscillation).It is postulated that overall platelet aggregation is the result of two distinct effects. Firstly, the direct action of ultrasonic cavitation disrupts a small proportion of the platelet population, resulting in the liberation of active substances. These substances produce aggregation, both directly and indirectly by inducing the physiological release reaction in adjacent undamaged platelets.


2019 ◽  
Vol 5 (4A) ◽  
pp. 1497
Author(s):  
Buana Dewanti Wimpi ◽  
Diana Natalia ◽  
Effiana Effiana

Latar Belakang: Dermatofitosis adalah suatu kondisi penyakit yang ditandai dengan infeksi pada jaringan berkeratin seperti epidermis, rambut dan kuku. Kondisi ini disebabkan oleh sekelompok jamur berfilamen terkait yang dikenal sebagai dermatofita. Bawang dayak (Eleutherine americana Merr.) merupakan tanaman berumbi merah yang mengandung senyawa bioaktif yang memiliki kemampuan menghambat pertumbuhan jamur golongan dermatofita. Metode: Umbi bawang dayak diekstraksi dengan metode maserasi menggunakan pelarut etanol 96%. Uji aktivitas antijamur menggunakan metode difusi cakram Kirby-Bauer dengan 5 variasi konsentrasi yaitu 60%, 30%, 15%, 7,5% dan 3,75%. Kontrol positif yang digunakan adalah itrakonazol 8 µg/disk sedangkan kontrol negatif yang digunakan adalah pelarut Tween 80 sebesar 10%. Hasil: Ekstrak umbi bawang dayak mengandung senyawa metabolit sekunder berupa saponin, kuinon, flavonoid, fenol, tanin, alkaloid, steroid dan triterpenoid. Uji aktivitas antijamur ekstrak etanol umbi bawang dayak dengan metode difusi cakram tidak membentuk zona hambat terhadap pertumbuhan Microsporum canis. Kesimpulan: Ekstrak etanol umbi bawang dayak tidak memiliki aktivitas antijamur terhadap pertumbuhan Microsporum canis.


2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Purwantiningsih Sugita ◽  
Bambang Srijanto ◽  
Budi Arifin ◽  
Fithri Amelia ◽  
Mahdi Mubarok

Chitosan, a modification of shrimp-shell waste, has been utilized as microcapsule. However, it’s fragile gel property needs to be strengthened by adding glutaraldehyde (glu) and natural hydrocolloid guar gum (gg). This research’s purposes were to study dissolution behaviour of ketoprofen and infar through optimum chitosan-guar gum microcapsule. Into 228.6 mL of 1.75% (w/v) chitosan solution in 1% (v/v) acetic acid,38.1 mL of gg solution was added with concentration variation of 0.35, 0.55, and 0.75% (w/v) for ketoprofen microcapsules and 0.05, 0.19, and 0.33% (w/v) for infar microcapsules, and stirred with magnetic stirrer until homogenous. Afterwards, 7.62mL of glu was added slowly under stirring, with concentrations varied: 3, 3.5, and 4% (v/v) for ketoprofen microcapsules, and 4, 4.5, and 5% (v/v) for infar microcapsules. All mixtures were shaked for 20 minutes for homogenization. All mixtures wereshaked for 20 minutes for homogenization. Into each  microcapsule mixture for ketoprofen, a solution of 2 g of ketoprofen in 250 mL of 96% ethanol was added, whereas solution of 100 mg of in 250 mL of 96% ethanol was added into each microcapsule mixture for infar. Every mixture was then added with 5 mL of 2% Tween-80 and stirred with magnetic stirrer for an hour at room temperature. Everymixture was then added with 5 mL of 2% Tween-80 and stirred with magnetic stirrer for an hour at room temperature. Conversion of suspension into fine powders/granules (microcapsules) was done by using spray dryer. The data of [gg], [glu], and medicine’s content from each microcapsule were treated with Minitab 14 software to obtain optimum [gg] and [glu] for microencapsulation. The dissolution behaviour of optimum ketoprofen and infar microcapsules were investigated. The result of optimization by using Minitab Release 14 software showed that among the microcapsule compositions of [gg] and [glu] were 0.35% (w/v) and 3.75% (v/v), respectively, optimum to coat ketoprofen, whereas [gg] and [glu] of 0.05% (w/v) and4.00% (v/v), respectively, optimum to coat infar, at constant chitosan concentration (1.75% [w/v]). In vitro dissolution profile showed that chitosan-guar gum gel microcapsule was more resistant in intestinal pH condition (rather basic) compared with that in gastric pH (very acidic).


2020 ◽  
Vol 16 ◽  
Author(s):  
Lucas da Silva Santos ◽  
Matheus Fillipe Langanke de Carvalho ◽  
Ana Claudia de Souza Pinto ◽  
Amanda Luisa da Fonseca ◽  
Julio César Dias Lopes ◽  
...  

Background: Malaria greatly affects the world health, having caused more than 228 million cases only in 2018. The emergence of drug resistance is one of the main problems in its treatment, demonstrating the urge for the development of new antimalarial drugs. Objective: Synthesis and in vitro antiplasmodial evaluation of triazole compounds derived from isocoumarins and a 3,4- dihydroisocoumarin. Method: The compounds were synthesized in 4 to 6-step reactions with the formation of the triazole ring via the Copper(I)-catalyzed 1,3-dipolar cycloaddition between isocoumarin or 3,4-dihydroisocoumarin azides and terminal alkynes. This key reaction provided compounds with an unprecedented connection of isocoumarin or 3,4-dihydroisocoumarin and the 1,2,3-triazole ring. The products were tested for their antiplasmodial activity against a Plasmodium falciparum chloroquine resistant and sensitive strains (W2 and 3D7, respectively). Results: Thirty-one substances were efficiently obtained by the proposed routes with an overall yield of 25-53%. The active substances in the antiplasmodial test displayed IC50 values ranging from 0.68-2.89 μM and 0.85-2.07 μM against W2 and 3D7 strains, respectively.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


Sign in / Sign up

Export Citation Format

Share Document