Fluorescence Spectroscopy for Rapid Detection and Classification of Bacterial Pathogens

2009 ◽  
Vol 63 (11) ◽  
pp. 1251-1255 ◽  
Author(s):  
Miryeong Sohn ◽  
David S. Himmelsbach ◽  
Franklin E. Barton ◽  
Paula J. Fedorka-Cray

This study deals with the rapid detection and differentiation of Escherichia coli, Salmonella, and Campylobacter, which are the most commonly identified commensal and pathogenic bacteria in foods, using fluorescence spectroscopy and multivariate analysis. Each bacterial sample cultured under controlled conditions was diluted in physiologic saline for analysis. Fluorescence spectra were collected over a range of 200–700 nm with 0.5 nm intervals on the PerkinElmer Fluorescence Spectrometer. The synchronous scan technique was employed to find the optimum excitation (λex) and emission (λem) wavelengths for individual bacteria with the wavelength interval (Δλ) being varied from 10 to 200 nm. The synchronous spectra and two-dimensional plots showed two maximum λex values at 225 nm and 280 nm and one maximum λem at 335–345 nm (λem=λex + Δλ), which correspond to the λex=225 nm, Δλ=110–120 nm, and λex=280 nm, Δλ=60–65 nm. For all three bacterial genera, the same synchronous scan results were obtained. The emission spectra from the three bacteria groups were very similar, creating difficulty in classification. However, the application of principal component analysis (PCA) to the fluorescence spectra resulted in successful classification of the bacteria by their genus as well as determining their concentration. The detection limit was approximately 103–104 cells/mL for each bacterial sample. These results demonstrated that fluorescence spectroscopy, when coupled with PCA processing, has the potential to detect and to classify bacterial pathogens in liquids. The methology is rapid (<10 min), inexpensive, and requires minimal sample preparation compared to standard analytical methods for bacterial detection.

2006 ◽  
Vol 2006 ◽  
pp. 1-5 ◽  
Author(s):  
Austin Nevin ◽  
Demetrios Anglos

Laser-induced fluorescence (LIF) spectroscopy can provide nondestructive, qualitative analysis of protein-based binding media found in artworks. Fluorescence emissions from proteins in egg yolk and egg white are due to autofluorescent aromatic amino acids as well as other native and age-related fluorophores, but the potential of fluorescence spectroscopy for the differentiation between binding media is dependent on the choice of a suitable excitation wavelength and limited by problems in interpretation. However, a better understanding of emission spectra associated with LIF can be achieved following comparisons with total emission fluorescence spectra where a series of consecutive emission spectra are recorded over a specific range. Results using nanosecond UV laser sources for LIF of egg-based binding media are presented which are rationalised following comparisons with total emission spectra. Specifically, fluorescence is assigned to tryptophan and oxidation products of amino acids; in the case of egg yolk, fatty-acid polymerisation and age-related degradation products account for the formation of fluorophores.


2018 ◽  
Vol 14 (3) ◽  
pp. 97
Author(s):  
Djoko Pujiarto ◽  
Bonny Poernomo Wahyu Soekarno ◽  
Akhiruddin Maddu

Rapid Detection Method for Fusarium sp. on Soybean Seed Using Fluorescence Spectroscopy MethodSeed borne pathogens play an important role as source of inoculum for disease in the field.  Seed health testing is applied in order to prevent risks caused by seed borne pathogen. Fluorescence spectroscopy is a potential technology to be used as detection method for seed borne pathogen. Research was conducted to develop rapid detection protocol for seed borne pathogenic fungus by fluorescence spectroscopy method.  The result showed that fluorescence spectroscopy could detect fluorescence emission of metabolite of Fusarium sp. after soybean seeds were incubated for 24 hr.  Metabolite of Fusarium sp. produced cyan fluorescent at peak wavelength emission 504 nm when excited to violet light (405 nm).  Fusarium sp. displayed typical fluorescence emission spectra which differ from fluorescence emission spectra of growth medium potato dextrose broth (PDB) (502 nm). It was evidenced that fluorescence spectroscopy method can be used to detect pathogenic seed borne fungi.


Author(s):  
Jian Yang ◽  
Wei Gong ◽  
Shuo Shi ◽  
Lin Du ◽  
Jia Sun ◽  
...  

Laser-induced fluorescence (LIF) served as an active technology has been widely used in many field, and it is closely related to excitation wavelength (EW). The objective of this investigation is to discuss the performance of different EWs of LIF LiDAR in identifying plant species. In this study, the 355, 460 and 556 nm lasers were utilized to excite the leaf fluorescence and the fluorescence spectra were measured by using the LIF LiDAR system built in the laboratory. Subsequently, the principal component analysis (PCA) with the help of support vector machine (SVM) was utilized to analyse fluorescence spectra. For the three EWs, the overall identification rates of the six plant species were 80 %, 83.3 % and 90 %. Experimental results demonstrated that 556 nm excitation light source is superior to 355 and 460 nm for the classification of the plant species for the same genus in this study. Thus, an appropriate excitation wavelength should be considered when the LIF LiDAR was utilized in the field of remote sensing based on the LIF technology.


2013 ◽  
Vol 12 (2) ◽  
pp. 83-92 ◽  
Author(s):  
Veronika Uríčková ◽  
Jana Sádecká ◽  
Pavel Májek

Abstract Total luminescence and synchronous scanning fluorescence spectroscopic techniques were investigated for differentiating brandies from mixed wine spirits. The studies were performed on 16 brandies from 3 different producers and 30 mixed wine spirits from 5 different producers. Differentiation between samples was accomplished by multivariate data analysis methods (principal component analysis, hierarchical cluster analysis, and linear discriminant analysis). Correct classification was obtained using emission spectra (400-650 nm) recorded at excitation wavelength 390 nm, excitation spectra (225-460 nm) obtained at emission wavelength 470 nm and synchronous fluorescence spectra (200-700 nm) collected at wavelength interval 80 nm. These results indicate that right-angle fluorescence spectroscopy offers a promising approach for the authentication of brandies as neither sample preparation nor special qualification of the personnel are required, and data acquisition and analysis are relatively simple when compared to front-face technique.


2018 ◽  
Vol 115 (4) ◽  
pp. 668-673 ◽  
Author(s):  
Runze Li ◽  
Umang Goswami ◽  
Maria King ◽  
Jie Chen ◽  
Thomas C. Cesario ◽  
...  

The determination of live and dead bacteria is of considerable significance for preventing health care-associated infection in hospitals, field clinics, and other areas. In this study, the viable (live) and nonviable (dead) bacteria in a sample were determined by means of their fluorescence spectra and principal component analysis (PCA). Data obtained in this study show that it is possible to identify bacteria strains and determine the live/dead ratio after UV light inactivation and antibiotic treatment, in situ, within minutes. In addition, synchronous fluorescence scans enable the identification of bacterial components such as tryptophan, tyrosine, and DNA. Compared with the time-consuming plating and culturing methods, this study renders a means for rapid detection and determination of live and dead bacteria.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Rahul Agrawal ◽  
Ashok Kumar Pathak ◽  
Awadhesh Kumar Rai ◽  
Gyanendra Kumar Rai

This paper deals the application of laser-induced breakdown spectroscopy (LIBS) to toxic metals used as pigment in crushed ice-ball samples. The present work highlights the advantages of LIBS as in situ, real-time analytical tool for rapid detection of toxic or heavy metals like lead (Pb) and chromium (Cr) and non toxic elements like carbon (C), nitrogen (N), magnesium (Mg), calcium (Ca), sodium (Na), and potassium (K) in crushed ice-ball of different colors (red, green, yellow, pale yellow, and orange) collected from five different areas, with minimal sample preparation. For rapid surveillance of toxic metals we have used multivariate analysis, that is, principal component analysis (PCA) with the LIBS spectral data of ice-ball samples. This study suggests that LIBS coupled with PCA may be an instant diagnostic tool for identification and classification of adulterated and nonadulterated samples.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Tatjana Dramićanin ◽  
Lea Lenhardt Acković ◽  
Ivana Zeković ◽  
Miroslav D. Dramićanin

Honey is a frequent target of adulteration through inappropriate production practices and origin mislabelling. Current methods for the detection of adulterated honey are time and labor consuming, require highly skilled personnel, and lengthy sample preparation. Fluorescence spectroscopy overcomes such drawbacks, as it is fast and noncontact and requires minimal sample preparation. In this paper, the application of fluorescence spectroscopy coupled with statistical tools for the detection of adulterated honey is demonstrated. For this purpose, fluorescence excitation-emission matrices were measured for 99 samples of different types of natural honey and 15 adulterated honey samples (in 3 technical replicas for each sample). Statistical t-test showed that significant differences between fluorescence of natural and adulterated honey samples exist in 5 spectral regions: (1) excitation: 240–265 nm, emission: 370–495 nm; (2) excitation: 280–320 nm, emission: 390–470 nm; (3) excitation: 260–285 nm, emission: 320–370 nm; (4) excitation: 310–360 nm, emission: 370–470 nm; and (5) excitation: 375–435 nm, emission: 440–520 nm, in which majority of fluorescence comes from the aromatic amino acids, phenolic compounds, and fluorescent Maillard reaction products. Principal component analysis confirmed these findings and showed that 90% of variance in fluorescence is accumulated in the first two principal components, which can be used for the discrimination of fake honey samples. The classification of honey from fluorescence data is demonstrated with a linear discriminant analysis (LDA). When subjected to LDA, total fluorescence intensities of selected spectral regions provided classification of honey (natural or adulterated) with 100% accuracy. In addition, it is demonstrated that intensities of honey emissions in each of these spectral regions may serve as criteria for the discrimination between natural and fake honey.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5351
Author(s):  
Elizaveta A. Rukosueva ◽  
Valeria A. Belikova ◽  
Ivan N. Krylov ◽  
Vladislav S. Orekhov ◽  
Evgenii V. Skorobogatov ◽  
...  

In this study we develop a variant of fluorescent sensor array technique based on addition of fluorophores to samples. A correct choice of fluorophores is critical for the successful application of the technique, which calls for the necessity of comparing different discrimination protocols. We used 36 honey samples from different sources to which various fluorophores were added (tris-(2,2′-bipyridyl) dichlororuthenium(II) (Ru(bpy)32+), zinc(II) 8-hydroxyquinoline-5-sulfonate (8-Ox-Zn), and thiazole orange in the presence of two types of deoxyribonucleic acid). The fluorescence spectra were obtained within 400–600 nm and treated by principal component analysis (PCA). No fluorophore allowed for the discrimination of all samples. To evaluate the discrimination performance of fluorophores, we introduced crossing number (CrN) calculated as the number of mutual intersections of confidence ellipses in the PCA scores plots, and relative position (RP) characterized by the pairwise mutual location of group centers and their most distant points. CrN and RP parameters correlated with each other, with total sensitivity (TS) calculated by Mahalanobis distances, and with the overall rating based on all metrics, with coefficients of correlation over 0.7. Most of the considered parameters gave the first place in the discrimination performance to Ru(bpy)32+ fluorophore.


1995 ◽  
Vol 73 (11) ◽  
pp. 1955-1959 ◽  
Author(s):  
Jennifer A. Olmstead ◽  
Jian H. Zhu ◽  
Derek G. Gray

Many paper and wood samples fluoresce, but the sources of the emission are not well understood. Fluorescence excitation and emission spectra of paper sheets prepared from thermomechanical pulp (TMP) and bleached chemithermomechanical pulp (BCTMP) showed that the emission from the BCTMP was significantly higher than that from the TMP. Removing almost all of the lignin from both pulps by means of an acid chlorite treatment did not reduce the fluorescence significantly. By means of an approximate correction for changes in sheet reflectivity caused by the chlorite treatment, the fluorescence intensity was found to increase with lignin removal. Clearly, fluorescence is not simply related to lignin content. Keywords: wood pulp, lignin, cellulose, fluorescence spectra, acid chlorite delignification.


Sign in / Sign up

Export Citation Format

Share Document