scholarly journals NG2 Proteoglycan Expression in Mouse Skin: Altered Postnatal Skin Development in the NG2 Null Mouse

2007 ◽  
Vol 56 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Kuniko Kadoya ◽  
Jun-ichi Fukushi ◽  
Yoshihiro Matsumoto ◽  
Yu Yamaguchi ◽  
William B. Stallcup

In early postnatal mouse skin, the NG2 proteoglycan is expressed in the subcutis, the dermis, the outer root sheath of hair follicles, and the basal keratinocyte layer of the epidermis. With further development, NG2 is most prominently expressed by stem cells in the hair follicle bulge region, as also observed in adult human skin. During telogen and anagen phases of the adult hair cycle, NG2 is also found in stem cell populations that reside in dermal papillae and the outer root sheaths of hair follicles. Ablation of NG2 produces alterations in both the epidermis and subcutis layers of neonatal skin. Compared with wild type, the NG2 null epidermis does not achieve its full thickness due to reduced proliferation of basal keratinocytes that serve as the stem cell population in this layer. Thickening of the subcutis is also delayed in NG2 null skin due to deficiencies in the adipocyte population.

2002 ◽  
Vol 50 (6) ◽  
pp. 751-766 ◽  
Author(s):  
Eva M. J. Peters ◽  
Desmond J. Tobin ◽  
Natasha Botchkareva ◽  
Marcus Maurer ◽  
Ralf Paus

Disruption of the c-Kit/stem cell factor (SCF) signaling pathway interferes with the survival, migration, and differentiation of melanocytes during generation of the hair follicle pigmentary unit. We examined c-Kit, SCF, and S100 (a marker for precursor melanocytic cells) expression, as well as melanoblast/melanocyte ultrastructure, in perinatal C57BL/6 mouse skin. Before the onset of hair bulb melanogenesis (i.e., stages 0–4 of hair follicle morphogenesis), strong c-Kit immunoreactivity (IR) was seen in selected non-mela-nogenic cells in the developing hair placode and hair plug. Many of these cells were S100-IR and were ultrastructurally identified as melanoblasts with migratory appearance. During the subsequent stages (5 and 6), increasingly dendritic c-Kit-IR cells successively invaded the hair bulb, while S100-IR gradually disappeared from these cells. Towards the completion of hair follicle morphogenesis (stages 7 and 8), several distinct follicular melanocytic cell populations could be defined and consisted broadly of (a) undifferentiated, non-pigmented c-Kit-negative melanoblasts in the outer root sheath and bulge and (b) highly differentiated melanocytes adjacent to the hair follicle dermal papilla above Auber's line. Widespread epithelial SCF-IR was seen throughout hair follicle morphogenesis. These findings suggest that melanoblasts express c-Kit as a prerequisite for migration into the SCF-supplying hair follicle epithelium. In addition, differentiated c-Kit-IR melanocytes target the bulb, while non-c-Kit-IR melanoblasts invade the outer root sheath and bulge in fully developed hair follicles.


2010 ◽  
Vol 21 (11) ◽  
pp. 1783-1787 ◽  
Author(s):  
Patricia A. Zuk

In 2002, researchers at UCLA published a manuscript in Molecular Biology of the Cell describing a novel adult stem cell population isolated from adipose tissue—the adipose-derived stem cell (ASC). Since that time, the ASC has gone on to be one of the most popular adult stem cell populations currently being used in the stem cell field. With multilineage mesodermal potential and possible ectodermal and endodermal potentials also, the ASC could conceivably be an alternate to pluripotent ES cells in both the lab and in the clinic. In this retrospective article, a historical perspective on the ASC is given together with exciting new applications for the stem cell being considered today.


Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2422-2430 ◽  
Author(s):  
FC Zeigler ◽  
BD Bennett ◽  
CT Jordan ◽  
SD Spencer ◽  
S Baumhueter ◽  
...  

The flk-2/flt-3 receptor tyrosine kinase was cloned from a hematopoietic stem cell population and is considered to play a potential role in the developmental fate of the stem cell. Using antibodies derived against the extracellular domain of the receptor, we show that stem cells from both murine fetal liver and bone marrow can express flk-2/flt-3. However, in both these tissues, there are stem cell populations that do not express the receptor. Cell cycle analysis shows that stem cells that do not express the receptor have a greater percentage of the population in G0 when compared with the flk-2/flt-3- positive population. Development of agonist antibodies to the receptor shows a proliferative role for the receptor in stem cell populations. Stimulation with an agonist antibody gives rise to an expansion of both myeloid and lymphoid cells and this effect is enhanced by the addition of kit ligand. These studies serve to further illustrate the importance of the flk-2/flt-3 receptor in the regulation of the hematopoietic stem cell.


2013 ◽  
Vol 24 (24) ◽  
pp. 3939-3944 ◽  
Author(s):  
Shangxi Liu ◽  
Andrew Leask

It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells—epithelial cells located in the follicle bulge—are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, but also, through as-yet-undefined mechanisms, the surrounding dermal microenvironment. The matricellular protein connective tissue growth factor (CCN2) is secreted into the microenvironment and acts as a multifunctional signaling modifier. In adult skin, CCN2 is largely absent but is unexpectedly restricted to the dermal papillae and outer root sheath. Deletion of CCN2 in dermal papillae and the outer root sheath results in a shortened telogen-phase length and elevated number of hair follicles. Recombinant CCN2 causes decreased β-catenin stability in keratinocytes. In vivo, loss of CCN2 results in elevated numbers of K15-positive epidermal stem cells that possess elevated β-catenin levels and β-catenin–dependent reporter gene expression. These results indicate that CCN2 expression by dermal papillae cells is a physiologically relevant suppressor of hair follicle formation by destabilization of β-catenin and suggest that CCN2 normally acts to maintain stem cell quiescence.


2019 ◽  
Vol 15 (4) ◽  
pp. 519-529 ◽  
Author(s):  
Cosmin Andrei Cismaru ◽  
Olga Soritau ◽  
Ancuta - Maria Jurj ◽  
Raduly Lajos ◽  
Bogdan Pop ◽  
...  

Blood ◽  
2003 ◽  
Vol 102 (5) ◽  
pp. 1654-1660 ◽  
Author(s):  
Tadashi Kumamoto ◽  
David Shalhevet ◽  
Hiroyuki Matsue ◽  
Mark E. Mummert ◽  
Brant R. Ward ◽  
...  

AbstractSeveral leukocyte populations normally reside in mouse skin, including Langerhans cells and γδ T cells in the epidermis and macrophage and mast cells in the dermis. Interestingly, these skin resident leukocytes are frequently identified within or around hair follicles (HFs), which are known to contain stem cell populations that can generate the epidermal architecture or give rise to the melanocyte lineage. Thus, we reasoned that HFs might serve as a local reservoir of the resident leukocyte populations in the skin. When vibrissal follicles of adult mice were cultured in the presence of stem cell factor (SCF), interleukin 3 (IL-3), IL-7, granulocyte-macrophage colony-stimulating factor, and Flt3 ligand, CD45+/lineage–/c-kit+/FcϵRI+ cells became detectable on the outgrowing fibroblasts in 10 days and expanded progressively thereafter. These HF-derived leukocytes showed characteristic features of connective tissue-type mast cells, including proliferative responsiveness to SCF, metachromatic granules, mRNA expression for mast cell proteases-1, -4, -5, and -6, and histamine release on ligation of surface IgE or stimulation with substance P or compound 48/80. These results, together with our findings that HFs contain c-kit+ cells and produce SCF mRNA and protein, suggest that HFs provide a unique microenvironment for local development of mast cells.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 154
Author(s):  
Hanluo Li ◽  
Federica Francesca Masieri ◽  
Marie Schneider ◽  
Alexander Bartella ◽  
Sebastian Gaus ◽  
...  

Hair follicle outer root sheath (ORS) is a putative source of stem cells with therapeutic capacity. ORS contains several multipotent stem cell populations, primarily in the distal compartment of the bulge region. However, the bulge is routinely obtained using invasive isolation methods, which require human scalp tissue ex vivo. Non-invasive sampling has been standardized by means of the plucking procedure, enabling to reproducibly obtain the mid-ORS part. The mid-ORS shows potential for giving rise to multiple stem cell populations in vitro. To demonstrate the phenotypic features of distal, middle, and proximal ORS parts, gene and protein expression profiles were studied in physically separated portions. The mid-part of the ORS showed a comparable or higher NGFR, nestin/NES, CD34, CD73, CD44, CD133, CK5, PAX3, MITF, and PMEL expression on both protein and gene levels, when compared to the distal ORS part. Distinct subpopulations of cells exhibiting small and round morphology were characterized with flow cytometry as simultaneously expressing CD73/CD271, CD49f/CD105, nestin, and not CK10. Potentially, these distinct subpopulations can give rise to cultured neuroectodermal and mesenchymal stem cell populations in vitro. In conclusion, the mid part of the ORS holds the potential for yielding multiple stem cells, in particular mesenchymal stem cells.


2015 ◽  
Author(s):  
Vincent L. Cannataro ◽  
Scott A. McKinley ◽  
Colette M. St. Mary

Somatic tissue evolves over a vertebrate's lifetime due to the accumulation of mutations in stem cell populations. Mutations may alter cellular fitness and contribute to tumorigenesis or aging. The distribution of mutational effects within somatic cells is not known. Given the unique regulatory regime of somatic cell division we hypothesize that mutational effects in somatic tissue fall into a different framework than whole organisms; one in which there are more mutations of large effect. Through simulation analysis we investigate the fit of tumor incidence curves generated using exponential and power law Distributions of Fitness Effects (DFE) to known tumorigenesis incidence. Modeling considerations include the architecture of stem cell populations, i.e., a large number of very small populations, and mutations that do and do not fix neutrally in the stem cell niche. We find that the typically quantified DFE in whole organisms is sufficient to explain tumorigenesis incidence. Further, due to the effects of small stem cell population sizes, i.e., strong genetic drift, deleterious mutations are predicted to accumulate, resulting in reduced tissue maintenance. Thus, despite there being a large number of stem cells throughout the intestine, its compartmental architecture leads to significant aging, a prime example of Muller's Ratchet.


2021 ◽  
Author(s):  
Alessandro Brombin ◽  
Daniel J. Simpson ◽  
Jana Travnickova ◽  
Hannah R. Brunsdon ◽  
Zhiqiang Zeng ◽  
...  

Melanocytes, our pigment producing cells, originate from neural crest-derived progenitors during embryogenesis and from multiple stem cell niches in adult tissues. Although pigmentation traits are known risk-factors for melanoma, we lack lineage markers with which to identify melanocyte stem cell populations and study their function. Here, by combining live-imaging, scRNA-seq and chemical-genetics in zebrafish, we identify the transcription factor Tfap2b as a functional marker for the melanocyte stem cell (MSC) population that resides at the dorsal root ganglia site. Tfap2b is required for only a few late-stage embryonic melanocytes, and instead is essential for MSC-dependent melanocyte regeneration. Our lineage-tracing data reveal that tfap2b-expressing MSCs have multi-fate potential, and are the cell-of-origin for a discrete number of embryonic melanocytes, large patches of adult melanocytes, and two other pigment cell types; iridophores and xanthophores. Hence, Tfap2b confers MSC identity, and thereby distinguishes MSCs from other neural crest and pigment cell lineages.


2011 ◽  
Vol 22 (14) ◽  
pp. 2532-2540 ◽  
Author(s):  
Kerry-Ann Nakrieko ◽  
Alena Rudkouskaya ◽  
Timothy S. Irvine ◽  
Sudhir J. A. D'souza ◽  
Lina Dagnino

Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15–expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.


Sign in / Sign up

Export Citation Format

Share Document