scholarly journals Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming

PLoS Biology ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. e3001239
Author(s):  
Qingfen Qiang ◽  
Jeanne M. Manalo ◽  
Hong Sun ◽  
Yujin Zhang ◽  
Anren Song ◽  
...  

Hypoxia drives aging and promotes age-related cognition and hearing functional decline. Despite the role of erythrocytes in oxygen (O2) transport, their role in the onset of aging and age-related cognitive decline and hearing loss (HL) remains undetermined. Recent studies revealed that signaling through the erythrocyte adenosine A2B receptor (ADORA2B) promotes O2 release to counteract hypoxia at high altitude. However, nothing is known about a role for erythrocyte ADORA2B in age-related functional decline. Here, we report that loss of murine erythrocyte–specific ADORA2B (eAdora2b−/−) accelerates early onset of age-related impairments in spatial learning, memory, and hearing ability. eAdora2b-/- mice display the early aging-like cellular and molecular features including the proliferation and activation of microglia and macrophages, elevation of pro-inflammatory cytokines, and attenuation of hypoxia-induced glycolytic gene expression to counteract hypoxia in the hippocampus (HIP), cortex, or cochlea. Hypoxia sufficiently accelerates early onset of cognitive and cochlear functional decline and inflammatory response in eAdora2b−/− mice. Mechanistically, erythrocyte ADORA2B-mediated activation of AMP-activated protein kinase (AMPK) and bisphosphoglycerate mutase (BPGM) promotes hypoxic and metabolic reprogramming to enhance production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite triggering O2 delivery. Significantly, this finding led us to further discover that murine erythroblast ADORA2B and BPGM mRNA levels and erythrocyte BPGM activity are reduced during normal aging. Overall, we determined that erythrocyte ADORA2B–BPGM axis is a key component for anti-aging and anti-age–related functional decline.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 845-845
Author(s):  
Hong Liu ◽  
Rongrong Liu ◽  
Travis Nemkov ◽  
Jacob Couturier ◽  
Long Liang ◽  
...  

Abstract Insufficient oxygen availability under stress conditions including hypoxia and anemia is a major stimulus for stress erythropoiesis. Adenosine is known to be induced under hypoxia and energy depletion. Increased adenosine signaling via its specific receptors regulates multiple cellular functions including anti-inflamation, anti-vascular leakage and vasodilation. However, its function in stress erythropoiesis and underlying mechanisms are enigmatic. Among four adenosine receptors, we report that adenosine A2B receptor (ADORA2B) is expressed at a significant higher level in megakaryocyte-erythroid progenitor (MEP) compared to common pluoripotent progenitors (CMP) or granulocyte-erythroid progenitor (GMP) in undifferentiated human CD34+. To determine the function role of ADORA2B in stress erythropoiesis, we generated erythroid Adora2b specific knockouts by crossing Adora2bf/fmice with EpoR-Cre+mice. First, we demonstrated that EpoR specifically ablated ADORA2B gene only in MEP but not in CMP or GMP lineages. Next, we challenged EpoR-Cre+mice (control) and Adora2bf/fEpoR-Cre+ mice (erythroid specific ablation of Adora2b genes) with hypoxia. We discovered that genetic deletion of ADORA2B at MEP stage blocked erythroid vs myeloid commitment under hypoxia-induced stress erythropoiesis. Further metabolic profiling revealed that ADORA2B activation regulated erythroid lineage commitment by promoting glucose uptake and erythroid metabolic reprogramming channelling glucose metabolism toward the pentose phosphate pathway (PPP) rather than glycolysis to generate more ribose phosphate as well as facilitate glutamine uptake to serve as a nitrogen donor for de novo nucleotide biosynthesis. Meanwhile, ADORA2B-stimulated glutaminolysis increased TCA cycle intermediates and thus increased energy production under stress erythropoiesis. We further demonstrated that ADORA2B on MEP is also important for erythroid commitment in response to PHZ-induced mouse model. Followup studies revealed that HIF-1a is induced in erythroid progenitors in a ADORA2B-dependent manner and ablation of HIF-1a only in MEP but not in CMP or GMP attenuated erythroid lineage commitment in both hypoxia-induced and anemia-induced stress erythropoiesis mouse models. Moreover, we showed that ADORA2B-triggered metabolic reprogramming depended on HIF-1a-preferentially upregulated gene expression of transporters for glucose and glutamine and key enyzmes of PPP and glutaminolysis over glycolytic enzymes. Similar to mouse studies, in cultured Epo-stimulated human CD34+ hematopoietic stem progenitor cells, enhancing ADORA2B signaling induced gene expression of the transporters for glucose and glutamine, key enzymes of PPP and glutaminolysis over glycolysis and thus controlled the commitment to erythrioid versus myeloid lineage and in turn promoted erythroid colony formation including BFU-E, CFU-E versus CFU-GM. Further studies showed that inhibition of HIF-1a by Chrysin significantly attenuated ADORA2B activation-induced upregulation of gene expression of the transporters of glucose and glutamine, metabolic enzymes and thus reduces erythroic commitment and BFU-E and CFU-E in Epo-stimualted CD34+ HPSCs. Overall, using multidisciplinary approaches including mouse genetics, metabolomics, isotopically labelled glucose and glutamine flux analysis, human CD34+ HPSCs and pharmacological studies, we provide both mouse and human evidence that ADORA2B is a missing cofactor controlling erythroid lineage commitment in stress erythropoiesis via HIF-1a-dependent upregulation of key genes to promote metabolic reprogramming. These findings add significant new insights to erythroid commitment and immediately provide new strategies for regulating stress erythropoiesis. Disclosures Nemkov: Omix Technologies inc: Equity Ownership.


Blood ◽  
2015 ◽  
Vol 125 (10) ◽  
pp. 1643-1652 ◽  
Author(s):  
Kaiqi Sun ◽  
Yujin Zhang ◽  
Mikhail V. Bogdanov ◽  
Hongyu Wu ◽  
Anren Song ◽  
...  

Key Points Adenosine signaling via ADORA2B induces SphK1 activity in sickle and normal erythrocytes via PKA-mediated ERK1/2 activation. Lowering adenosine by PEG-ADA or interfering ADORA2B activation by specific antagonist decreases SphK1 activity in normal and sickle RBCs.


2018 ◽  
Vol 27 ◽  
pp. S115-S116
Author(s):  
E. Vecchio ◽  
J. Baltos ◽  
C. Qin ◽  
R. Ritchie ◽  
A. Christopoulos ◽  
...  

Nature ◽  
2000 ◽  
Vol 407 (6805) ◽  
pp. 747-750 ◽  
Author(s):  
Véronique Corset ◽  
Kim Tuyen Nguyen-Ba-Charvet ◽  
Christelle Forcet ◽  
Emmanuel Moyse ◽  
Alain Chédotal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document