scholarly journals PPIDomainMiner: Inferring domain-domain interactions from multiple sources of protein-protein interactions

2021 ◽  
Vol 17 (8) ◽  
pp. e1008844
Author(s):  
Seyed Ziaeddin Alborzi ◽  
Amina Ahmed Nacer ◽  
Hiba Najjar ◽  
David W. Ritchie ◽  
Marie-Dominique Devignes

Many biological processes are mediated by protein-protein interactions (PPIs). Because protein domains are the building blocks of proteins, PPIs likely rely on domain-domain interactions (DDIs). Several attempts exist to infer DDIs from PPI networks but the produced datasets are heterogeneous and sometimes not accessible, while the PPI interactome data keeps growing. We describe a new computational approach called “PPIDM” (Protein-Protein Interactions Domain Miner) for inferring DDIs using multiple sources of PPIs. The approach is an extension of our previously described “CODAC” (Computational Discovery of Direct Associations using Common neighbors) method for inferring new edges in a tripartite graph. The PPIDM method has been applied to seven widely used PPI resources, using as “Gold-Standard” a set of DDIs extracted from 3D structural databases. Overall, PPIDM has produced a dataset of 84, 552 non-redundant DDIs. Statistical significance (p-value) is calculated for each source of PPI and used to classify the PPIDM DDIs in Gold (9, 175 DDIs), Silver (24, 934 DDIs) and Bronze (50, 443 DDIs) categories. Dataset comparison reveals that PPIDM has inferred from the 2017 releases of PPI sources about 46% of the DDIs present in the 2020 release of the 3did database, not counting the DDIs present in the Gold-Standard. The PPIDM dataset contains 10, 229 DDIs that are consistent with more than 13, 300 PPIs extracted from the IMEx database, and nearly 23, 300 DDIs (27.5%) that are consistent with more than 214, 000 human PPIs extracted from the STRING database. Examples of newly inferred DDIs covering more than 10 PPIs in the IMEx database are provided. Further exploitation of the PPIDM DDI reservoir includes the inventory of possible partners of a protein of interest and characterization of protein interactions at the domain level in combination with other methods. The result is publicly available at http://ppidm.loria.fr/.

2021 ◽  
Author(s):  
Alborzi Seyed Ziaeddine ◽  
Ahmed-Nacer Amina ◽  
Najjar Hiba ◽  
David W Ritchie ◽  
Devignes Marie-Dominique

AbstractMany biological processes are mediated by protein-protein interactions (PPIs). Because protein domains are the building blocks of proteins, PPIs likely rely on domain-domain interactions (DDIs). Several attempts exist to infer DDIs from PPI networks but the produced datasets are heterogeneous and sometimes not accessible, while the PPI interactome data keeps growing.We describe a new computational approach called “PPIDM” (Protein-Protein Interactions Domain Miner) for inferring DDIs using multiple sources of PPIs. The approach is an extension of our previously described “CODAC” (Computational Discovery of Direct Associations using Common neighbors) method for inferring new edges in a tripartite graph. The PPIDM method has been applied to seven widely used PPI resources, using as “Gold-Standard” a set of DDIs extracted from 3D structural databases. Overall, PPIDM has produced a dataset of 84, 552 non-redundant DDIs. Statistical significance (p-value) is calculated for each source of PPI and used to classify the PPIDM DDIs in Gold (9, 175 DDIs), Silver (24, 934 DDIs) and Bronze (50, 443 DDIs) categories. Dataset comparison reveals that PPIDM has inferred from the 2017 releases of PPI sources about 46% of the DDIs present in the 2020 release of the 3did database, not counting the DDIs present in the Gold-Standard. The PPIDM dataset contains more than 3, 250 DDIs that are consistent with nearly 10, 600 PPIs extracted from the IMEx database, and more than 23, 000 DDIs (27.5%) that are consistent with more than 62, 000 human PPIs extracted from the STRING database. Examples of newly inferred DDIs covering more than ten PPIs in the IMEx database are provided.Further exploitation of the PPIDM DDI reservoir includes the inventory of possible partners of a protein of interest and characterization of protein interactions at the domain level in combination with other methods. The result is publicly available at http://ppidm.loria.fr/.Author summaryWe revisit at a large scale the question of inferring DDIs from PPIs. Compared to previous studies, we take a unified approach accross multiple sources of PPIs. This approach is a method for inferring new edges in a tripartite graph setting and can be compared to link prediction approaches in knowledge graphs. Aggregation of several sources is performed using an optimized weighted average of the individual scores calculated in each source. A huge dataset of over 84K DDIs is produced which far exceeds the previous datasets. We show that a significant portion of the PPIDM dataset covers a large number of PPIs from curated (IMEx) or non curated (STRING) databases. Such a reservoir of DDIs deserves further exploration and can be combined with high-throughput methods such as cross-linking mass spectrometry to identify plausible protein partners of proteins of interest.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sun Sook Chung ◽  
Joseph C F Ng ◽  
Anna Laddach ◽  
N Shaun B Thomas ◽  
Franca Fraternali

Abstract Direct drug targeting of mutated proteins in cancer is not always possible and efficacy can be nullified by compensating protein–protein interactions (PPIs). Here, we establish an in silico pipeline to identify specific PPI sub-networks containing mutated proteins as potential targets, which we apply to mutation data of four different leukaemias. Our method is based on extracting cyclic interactions of a small number of proteins topologically and functionally linked in the Protein–Protein Interaction Network (PPIN), which we call short loop network motifs (SLM). We uncover a new property of PPINs named ‘short loop commonality’ to measure indirect PPIs occurring via common SLM interactions. This detects ‘modules’ of PPI networks enriched with annotated biological functions of proteins containing mutation hotspots, exemplified by FLT3 and other receptor tyrosine kinase proteins. We further identify functional dependency or mutual exclusivity of short loop commonality pairs in large-scale cellular CRISPR–Cas9 knockout screening data. Our pipeline provides a new strategy for identifying new therapeutic targets for drug discovery.


2018 ◽  
Vol 14 ◽  
pp. 2881-2896 ◽  
Author(s):  
Laura Carro

Antibiotics are potent pharmacological weapons against bacterial infections; however, the growing antibiotic resistance of microorganisms is compromising the efficacy of the currently available pharmacotherapies. Even though antimicrobial resistance is not a new problem, antibiotic development has failed to match the growth of resistant pathogens and hence, it is highly critical to discover new anti-infective drugs with novel mechanisms of action which will help reducing the burden of multidrug-resistant microorganisms. Protein–protein interactions (PPIs) are involved in a myriad of vital cellular processes and have become an attractive target to treat diseases. Therefore, targeting PPI networks in bacteria may offer a new and unconventional point of intervention to develop novel anti-infective drugs which can combat the ever-increasing rate of multidrug-resistant bacteria. This review describes the progress achieved towards the discovery of molecules that disrupt PPI systems in bacteria for which inhibitors have been identified and whose targets could represent an alternative lead discovery strategy to obtain new anti-infective molecules.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Wang ◽  
Yuanyuan Shi ◽  
Yadong Li ◽  
Lili Zhang ◽  
Sihao Qu ◽  
...  

Background: Pulmonary Fibrosis (PF) is an interstitial lung disease characterized by excessive accumulation of extracellular matrix in the lungs, which disrupts the structure and gas exchange of the alveoli. There are only two approved therapies for PF, nintedanib (Nib) and pirfenidone. Therefore, the use of Chinese medicine for PF is attracting attention. Tianlongkechuanling (TL) is an effective Chinese formula that has been applied clinically to alleviate PF, which can enhance lung function and quality of life.Purpose: The potential effects and specific mechanisms of TL have not been fully explored, yet. In the present study, proteomics was performed to explore the therapeutic protein targets of TL on Bleomycin (BLM)-induced Pulmonary Fibrosis.Method: BLM-induced PF mice models were established. Hematoxylineosin staining and Masson staining were used to analyze histopathological changes and collagen deposition. To screen the differential proteins expression between the Control, BLM, BLM + TL and BLM + Nib (BLM + nintedanib) groups, quantitative proteomics was performed using tandem mass tag (TMT) labeling with nanoLC-MS/MS [nano liquid chromatographymass spectrometry]). Changes in the profiles of the expressed proteins were analyzed using the bioinformatics tools Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein–protein interactions (PPI) were established by STRING. Expressions of α-smooth muscle actin (α-SMA), Collagen I (Col1a1), Fibronectin (Fn1) and enzymes in arginase-ornithine pathway were detected by Western blot or RT-PCR.Result: TL treatments significantly ameliorated BLM-induced collagen deposition in lung tissues. Moreover, TL can inhibit the protein expressions of α-SMA and the mRNA expressions of Col1a1 and Fn1. Using TMT technology, we observed 253 differentially expressed proteins related to PPI networks and involved different KEGG pathways. Arginase-ornithine pathway is highly significant. The expression of arginase1 (Arg1), carbamoyltransferase (OTC), carbamoy-phosphate synthase (CPS1), argininosuccinate synthase (ASS1), ornithine aminotransferase (OAT) argininosuccinate lyase (ASL) and inducible nitric oxide synthase (iNOS) was significantly decreased after TL treatments.Conclusion: Administration of TL in BLM-induced mice resulted in decreasing pulmonary fibrosis. Our findings propose that the down regulation of arginase-ornithine pathway expression with the reduction of arginase biosynthesis is a central mechanism and potential treatment for pulmonary fibrosis with the prevention of TL.


2019 ◽  
Vol 20 (S16) ◽  
Author(s):  
Da Zhang ◽  
Mansur Kabuka

Abstract Background Protein-protein interactions(PPIs) engage in dynamic pathological and biological procedures constantly in our life. Thus, it is crucial to comprehend the PPIs thoroughly such that we are able to illuminate the disease occurrence, achieve the optimal drug-target therapeutic effect and describe the protein complex structures. However, compared to the protein sequences obtainable from various species and organisms, the number of revealed protein-protein interactions is relatively limited. To address this dilemma, lots of research endeavor have investigated in it to facilitate the discovery of novel PPIs. Among these methods, PPI prediction techniques that merely rely on protein sequence data are more widespread than other methods which require extensive biological domain knowledge. Results In this paper, we propose a multi-modal deep representation learning structure by incorporating protein physicochemical features with the graph topological features from the PPI networks. Specifically, our method not only bears in mind the protein sequence information but also discerns the topological representations for each protein node in the PPI networks. In our paper, we construct a stacked auto-encoder architecture together with a continuous bag-of-words (CBOW) model based on generated metapaths to study the PPI predictions. Following by that, we utilize the supervised deep neural networks to identify the PPIs and classify the protein families. The PPI prediction accuracy for eight species ranged from 96.76% to 99.77%, which signifies that our multi-modal deep representation learning framework achieves superior performance compared to other computational methods. Conclusion To the best of our knowledge, this is the first multi-modal deep representation learning framework for examining the PPI networks.


Author(s):  
Christian Schönbach

Advances in protein-protein interaction (PPI) detection technology and computational analysis methods have produced numerous PPI networks, whose completeness appears to depend on the extent of data derived from different PPI assay methods and the complexity of the studied organism. Despite the partial nature of human PPI networks, computational data integration and analyses helped to elucidate new interactions and disease pathways. The success of computational analyses considerably depends on PPI data understanding. Exploration of the data and verification of their quality requires basic knowledge of the molecular biology of PPIs and familiarity with the assay methods used to detect PPIs. Both topics are reviewed in this chapter. After introducing various types of PPIs the principles of selected PPI assays are explained and their limitations discussed. Case studies of the Wnt signaling pathway and splice regulation demonstrate some of the challenges and opportunities that arise from assaying and analyzing PPIs. The chapter is concluded with an extrapolation to human systems biology that offers a glimpse into the future of PPI networks.


2019 ◽  
Vol 3 (4) ◽  
pp. 357-369
Author(s):  
J. Harry Caufield ◽  
Peipei Ping

Abstract Protein–protein interactions, or PPIs, constitute a basic unit of our understanding of protein function. Though substantial effort has been made to organize PPI knowledge into structured databases, maintenance of these resources requires careful manual curation. Even then, many PPIs remain uncurated within unstructured text data. Extracting PPIs from experimental research supports assembly of PPI networks and highlights relationships crucial to elucidating protein functions. Isolating specific protein–protein relationships from numerous documents is technically demanding by both manual and automated means. Recent advances in the design of these methods have leveraged emerging computational developments and have demonstrated impressive results on test datasets. In this review, we discuss recent developments in PPI extraction from unstructured biomedical text. We explore the historical context of these developments, recent strategies for integrating and comparing PPI data, and their application to advancing the understanding of protein function. Finally, we describe the challenges facing the application of PPI mining to the text concerning protein families, using the multifunctional 14-3-3 protein family as an example.


2015 ◽  
Vol 112 (15) ◽  
pp. 4564-4569 ◽  
Author(s):  
Jeffrey D. Brodin ◽  
Evelyn Auyeung ◽  
Chad A. Mirkin

The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. Herein, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique lattices composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. This study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials.


2012 ◽  
Vol 6 (Suppl 1) ◽  
pp. S7 ◽  
Author(s):  
Chen Chen ◽  
Jun-Fei Zhao ◽  
Qiang Huang ◽  
Rui-Sheng Wang ◽  
Xiang-Sun Zhang

2021 ◽  
Vol 12 ◽  
Author(s):  
Lun Hu ◽  
Xiaojuan Wang ◽  
Yu-An Huang ◽  
Pengwei Hu ◽  
Zhu-Hong You

Proteins are one of most significant components in living organism, and their main role in cells is to undertake various physiological functions by interacting with each other. Thus, the prediction of protein-protein interactions (PPIs) is crucial for understanding the molecular basis of biological processes, such as chronic infections. Given the fact that laboratory-based experiments are normally time-consuming and labor-intensive, computational prediction algorithms have become popular at present. However, few of them could simultaneously consider both the structural information of PPI networks and the biological information of proteins for an improved accuracy. To do so, we assume that the prior information of functional modules is known in advance and then simulate the generative process of a PPI network associated with the biological information of proteins, i.e., Gene Ontology, by using an established Bayesian model. In order to indicate to what extent two proteins are likely to interact with each other, we propose a novel scoring function by combining the membership distributions of proteins with network paths. Experimental results show that our algorithm has a promising performance in terms of several independent metrics when compared with state-of-the-art prediction algorithms, and also reveal that the consideration of modularity in PPI networks provides us an alternative, yet much more flexible, way to accurately predict PPIs.


Sign in / Sign up

Export Citation Format

Share Document