scholarly journals A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population

PLoS Genetics ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. e1008191 ◽  
Author(s):  
Xiaosong Ma ◽  
Fangjun Feng ◽  
Yu Zhang ◽  
Ibrahim Eid Elesawi ◽  
Kai Xu ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanan Niu ◽  
Tianxiao Chen ◽  
Chunchao Wang ◽  
Kai Chen ◽  
Congcong Shen ◽  
...  

Abstract Background Grain weight and grain shape are important agronomic traits that affect the grain yield potential and grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm resources for grain weight and grain shape. Results Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600, Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided. Conclusions Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice and provide valuable information for improving rice grain yield and grain quality through molecular breeding.


Genome ◽  
2018 ◽  
Vol 61 (4) ◽  
pp. 233-240 ◽  
Author(s):  
Xiao-Ming Zheng ◽  
Tingting Gong ◽  
Hong-Ling Ou ◽  
Dayuan Xue ◽  
Weihua Qiao ◽  
...  

Seed size is variable within many plant species, and understanding the underlying genetic factors can provide insights into mechanisms of local environmental adaptation. Here we make use of the abundant genomic and germplasm resources available for rice (Oryza sativa) to perform a large-scale genome-wide association study (GWAS) of grain width. Grain width varies widely within the crop and is also known to show climate-associated variation across populations of its wild progenitor. Using a filtered dataset of >1.9 million genome-wide SNPs in a sample of 570 cultivated and wild rice accessions, we performed GWAS with two complementary models, GLM and MLM. The models yielded 10 and 33 significant associations, respectively, and jointly yielded seven candidate locus regions, two of which have been previously identified. Analyses of nucleotide diversity and haplotype distributions at these loci revealed signatures of selection and patterns consistent with adaptive introgression of grain width alleles across rice variety groups. The results provide a 50% increase in the total number of rice grain width loci mapped to date and support a polygenic model whereby grain width is shaped by gene-by-environment interactions. These loci can potentially serve as candidates for studies of adaptive seed size variation in wild grass species.


2020 ◽  
Vol 11 ◽  
Author(s):  
Haritha Bollinedi ◽  
Ashutosh Kumar Yadav ◽  
K. K. Vinod ◽  
S. Gopala Krishnan ◽  
Prolay Kumar Bhowmick ◽  
...  

2009 ◽  
Vol 42 (05) ◽  
Author(s):  
B Konte ◽  
I Giegling ◽  
AM Hartmann ◽  
H Konnerth ◽  
P Muglia ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1701-P
Author(s):  
LAUREN E. WEDEKIND ◽  
WEN-CHI HSUEH ◽  
SAYUKO KOBES ◽  
MUIDEEN T. OLAIYA ◽  
WILLIAM C. KNOWLER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document