scholarly journals Phylogenomic assessment of the role of hybridization and introgression in trait evolution

PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009701
Author(s):  
Yaxuan Wang ◽  
Zhen Cao ◽  
Huw A. Ogilvie ◽  
Luay Nakhleh

Trait evolution among a set of species—a central theme in evolutionary biology—has long been understood and analyzed with respect to a species tree. However, the field of phylogenomics, which has been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree incongruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states are incongruent with the branching patterns in the species tree, the same state could have arisen independently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better revealed by phylogenomic studies is gene flow between different species. In this work, we present a phylogenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate the interplay between the parameters of the evolutionary history and the role of introgression in a binary trait’s evolution (which we call xenoplasy). Very importantly, we demonstrate, including on a biological data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow could lead to misleading hypotheses about trait evolution.

Author(s):  
Yaxuan Wang ◽  
Zhen Cao ◽  
Huw A. Ogilvie ◽  
Luay Nakhleh

AbstractTrait evolution in a set of species—a central theme in evolutionary biology—has long been understood and analyzed with respect to a species tree. However, the field of phylogenomics, which has been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree incongruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states are incongruent with the branching patterns in the species tree, the same state could have arisen independently in different species (homoplasy) or followed the branching patterns of gene trees, rather than the species tree (hemiplasy). Recent work by Guerrero and Hahn (PNAS 115:12787-12792, 2018) provided a significant step towards teasing apart the roles of homoplasy and hemiplasy in trait evolution by analyzing it with respect to the species tree and the gene trees within its branches.Another evolutionary process whose extent and significance are better revealed by phylogenomic studies is hybridization between different species. In this work, we present a phylogenomic method for assessing the role of hybridization and introgression in the evolution of bi-allelic traits, including polymorphic ones. We apply the method to simulated evolutionary scenarios to demonstrate the interplay between the parameters of the evolutionary history and the role of introgression in a trait’s evolution (which we call xenoplasy). Very importantly, we demonstrate, including on a biological data set, that inferring a species tree and using it for trait evolution analysis when hybridization had occurred could provide misleading hypotheses about trait evolution.


2020 ◽  
Author(s):  
Michael J. Sanderson ◽  
Michelle M. McMahon ◽  
Mike Steel

AbstractTerraces in phylogenetic tree space are sets of trees with identical optimality scores for a given data set, arising from missing data. These were first described for multilocus phylogenetic data sets in the context of maximum parsimony inference and maximum likelihood inference under certain model assumptions. Here we show how the mathematical properties that lead to terraces extend to gene tree - species tree problems in which the gene trees are incomplete. Inference of species trees from either sets of gene family trees subject to duplication and loss, or allele trees subject to incomplete lineage sorting, can exhibit terraces in their solution space. First, we show conditions that lead to a new kind of terrace, which stems from subtree operations that appear in reconciliation problems for incomplete trees. Then we characterize when terraces of both types can occur when the optimality criterion for tree search is based on duplication, loss or deep coalescence scores. Finally, we examine the impact of assumptions about the causes of losses: whether they are due to imperfect sampling or true evolutionary deletion.


2019 ◽  
Vol 37 (3) ◽  
pp. 904-922 ◽  
Author(s):  
Benjamin R Karin ◽  
Tony Gamble ◽  
Todd R Jackman

Abstract Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.


Author(s):  
Thomas C. Nelson ◽  
Angela M. Stathos ◽  
Daniel D. Vanderpool ◽  
Findley R. Finseth ◽  
Yao-wu Yuan ◽  
...  

AbstractInferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele-sharing (Patterson’s D-statistic and related tests) indicate that gene-tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M. cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.Author SummaryAdaptive radiations, which involve both divergent evolution of new traits and recurrent trait evolution, provide insight into the processes that generate and maintain organismal diversity. However, rapid radiations also generate particular challenges for inferring the evolutionary history and mechanistic basis of adaptation and speciation, as multiple processes can cause different parts of the genome to have distinct phylogenetic trees. Thus, inferences about the mode and timing of divergence and the causes of parallel trait evolution require a fine-grained understanding of the flow of genomic variation through time. In this study, we used genome-wide sampling of thousands of genes to re-construct the evolutionary histories of a model plant radiation, the monkeyflowers of Mimulus section Erythranthe. Work over the past half-century has established the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated, as are three other species in the section) as textbook examples of both rapid speciation via shifts in pollination syndrome and convergent evolution of floral syndromes. Our phylogenomic analyses re-write both of these stories, placing M. cardinalis in a clade with other hummingbird-pollinated taxa and demonstrating that abundant introgression between ancestral lineages as well as in areas of current sympatry contributes to the real (but misleading) affinities between M. cardinalis and M. lewisii. This work illustrates the pervasive influence of gene flow and introgression during adaptive radiation and speciation, and underlines the necessity of a gene-scale and genome-wide phylogenomics framework for understanding trait divergence, even among well-established species.


2015 ◽  
Author(s):  
Yuan Tian ◽  
Laura Kubatko

We propose a coalescent model for three species that allows gene flow between both pairs of sister populations. The model is designed to analyze multilocus genomic sequence alignments, with one sequence sampled from each of the three species. The model is formulated using a Markov chain representation, which allows use of matrix exponentiation to compute analytical expressions for the probability density of gene tree genealogies. The gene tree history distribution as well as the gene tree topology distribution under this coalescent model with gene flow are then calculated via numerical integration. We analyze the model to compare the distributions of gene tree topologies and gene tree histories for species trees with differing effective population sizes and gene flow rates. Our results suggest conditions under which the species tree and associated parameters are not identifiable from the gene tree topology distribution when gene flow is present, but indicate that the gene tree history distribution may identify the species tree and associated parameters. Thus, the gene tree history distribution can be used to infer parameters such as the ancestral effective population sizes and the rates of gene flow in a maximum likelihood (ML) framework. We conduct computer simulations to evaluate the performance of our method in estimating these parameters, and we apply our method to an Afrotropical mosquito data set (Fontaine et al., 2015) to demonstrate the usefulness of our method for the analysis of empirical data. Key words: coalescent, gene flow, migration, hybridization, gene tree, topology, history, maximum likelihood, speciation.


Author(s):  
Felipe V Freitas ◽  
Michael G Branstetter ◽  
Terry Griswold ◽  
Eduardo A B Almeida

Abstract Incongruence among phylogenetic results has become a common occurrence in analyses of genome-scale data sets. Incongruence originates from uncertainty in underlying evolutionary processes (e.g., incomplete lineage sorting) and from difficulties in determining the best analytical approaches for each situation. To overcome these difficulties, more studies are needed that identify incongruences and demonstrate practical ways to confidently resolve them. Here, we present results of a phylogenomic study based on the analysis 197 taxa and 2,526 ultraconserved element (UCE) loci. We investigate evolutionary relationships of Eucerinae, a diverse subfamily of apid bees (relatives of honey bees and bumble bees) with >1,200 species. We sampled representatives of all tribes within the group and >80% of genera, including two mysterious South American genera, Chilimalopsis and Teratognatha. Initial analysis of the UCE data revealed two conflicting hypotheses for relationships among tribes. To resolve the incongruence, we tested concatenation and species tree approaches and used a variety of additional strategies including locus filtering, partitioned gene-trees searches, and gene-based topological tests. We show that within-locus partitioning improves gene tree and subsequent species-tree estimation, and that this approach, confidently resolves the incongruence observed in our data set. After exploring our proposed analytical strategy on eucerine bees, we validated its efficacy to resolve hard phylogenetic problems by implementing it on a published UCE data set of Adephaga (Insecta: Coleoptera). Our results provide a robust phylogenetic hypothesis for Eucerinae and demonstrate a practical strategy for resolving incongruence in other phylogenomic data sets.


2019 ◽  
Vol 69 (3) ◽  
pp. 579-592 ◽  
Author(s):  
Stephen A Smith ◽  
Nathanael Walker-Hale ◽  
Joseph F Walker ◽  
Joseph W Brown

Abstract Studies have demonstrated that pervasive gene tree conflict underlies several important phylogenetic relationships where different species tree methods produce conflicting results. Here, we present a means of dissecting the phylogenetic signal for alternative resolutions within a data set in order to resolve recalcitrant relationships and, importantly, identify what the data set is unable to resolve. These procedures extend upon methods for isolating conflict and concordance involving specific candidate relationships and can be used to identify systematic error and disambiguate sources of conflict among species tree inference methods. We demonstrate these on a large phylogenomic plant data set. Our results support the placement of Amborella as sister to the remaining extant angiosperms, Gnetales as sister to pines, and the monophyly of extant gymnosperms. Several other contentious relationships, including the resolution of relationships within the bryophytes and the eudicots, remain uncertain given the low number of supporting gene trees. To address whether concatenation of filtered genes amplified phylogenetic signal for relationships, we implemented a combinatorial heuristic to test combinability of genes. We found that nested conflicts limited the ability of data filtering methods to fully ameliorate conflicting signal amongst gene trees. These analyses confirmed that the underlying conflicting signal does not support broad concatenation of genes. Our approach provides a means of dissecting a specific data set to address deep phylogenetic relationships while also identifying the inferential boundaries of the data set. [Angiosperms; coalescent; gene-tree conflict; genomics; phylogenetics; phylogenomics.]


2020 ◽  
Vol 12 (2) ◽  
pp. 3977-3995 ◽  
Author(s):  
Hillary Koch ◽  
Michael DeGiorgio

Abstract Though large multilocus genomic data sets have led to overall improvements in phylogenetic inference, they have posed the new challenge of addressing conflicting signals across the genome. In particular, ancestral population structure, which has been uncovered in a number of diverse species, can skew gene tree frequencies, thereby hindering the performance of species tree estimators. Here we develop a novel maximum likelihood method, termed TASTI (Taxa with Ancestral structure Species Tree Inference), that can infer phylogenies under such scenarios, and find that it has increasing accuracy with increasing numbers of input gene trees, contrasting with the relatively poor performances of methods not tailored for ancestral structure. Moreover, we propose a supertree approach that allows TASTI to scale computationally with increasing numbers of input taxa. We use genetic simulations to assess TASTI’s performance in the three- and four-taxon settings and demonstrate the application of TASTI on a six-species Afrotropical mosquito data set. Finally, we have implemented TASTI in an open-source software package for ease of use by the scientific community.


2020 ◽  
Author(s):  
Liming Cai ◽  
Zhenxiang Xi ◽  
Emily Moriarty Lemmon ◽  
Alan R Lemmon ◽  
Austin Mast ◽  
...  

Abstract The genomic revolution offers renewed hope of resolving rapid radiations in the Tree of Life. The development of the multispecies coalescent (MSC) model and improved gene tree estimation methods can better accommodate gene tree heterogeneity caused by incomplete lineage sorting (ILS) and gene tree estimation error stemming from the short internal branches. However, the relative influence of these factors in species tree inference is not well understood. Using anchored hybrid enrichment, we generated a data set including 423 single-copy loci from 64 taxa representing 39 families to infer the species tree of the flowering plant order Malpighiales. This order includes nine of the top ten most unstable nodes in angiosperms, which have been hypothesized to arise from the rapid radiation during the Cretaceous. Here, we show that coalescent-based methods do not resolve the backbone of Malpighiales and concatenation methods yield inconsistent estimations, providing evidence that gene tree heterogeneity is high in this clade. Despite high levels of ILS and gene tree estimation error, our simulations demonstrate that these two factors alone are insufficient to explain the lack of resolution in this order. To explore this further, we examined triplet frequencies among empirical gene trees and discovered some of them deviated significantly from those attributed to ILS and estimation error, suggesting gene flow as an additional and previously unappreciated phenomenon promoting gene tree variation in Malpighiales. Finally, we applied a novel method to quantify the relative contribution of these three primary sources of gene tree heterogeneity and demonstrated that ILS, gene tree estimation error, and gene flow contributed to 10.0%, 34.8%, and 21.4% of the variation, respectively. Together, our results suggest that a perfect storm of factors likely influence this lack of resolution, and further indicate that recalcitrant phylogenetic relationships like the backbone of Malpighiales may be better represented as phylogenetic networks. Thus, reducing such groups solely to existing models that adhere strictly to bifurcating trees greatly oversimplifies reality, and obscures our ability to more clearly discern the process of evolution.


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1645-1656 ◽  
Author(s):  
Bruce Rannala ◽  
Ziheng Yang

Abstract The effective population sizes of ancestral as well as modern species are important parameters in models of population genetics and human evolution. The commonly used method for estimating ancestral population sizes, based on counting mismatches between the species tree and the inferred gene trees, is highly biased as it ignores uncertainties in gene tree reconstruction. In this article, we develop a Bayes method for simultaneous estimation of the species divergence times and current and ancestral population sizes. The method uses DNA sequence data from multiple loci and extracts information about conflicts among gene tree topologies and coalescent times to estimate ancestral population sizes. The topology of the species tree is assumed known. A Markov chain Monte Carlo algorithm is implemented to integrate over uncertain gene trees and branch lengths (or coalescence times) at each locus as well as species divergence times. The method can handle any species tree and allows different numbers of sequences at different loci. We apply the method to published noncoding DNA sequences from the human and the great apes. There are strong correlations between posterior estimates of speciation times and ancestral population sizes. With the use of an informative prior for the human-chimpanzee divergence date, the population size of the common ancestor of the two species is estimated to be ∼20,000, with a 95% credibility interval (8000, 40,000). Our estimates, however, are affected by model assumptions as well as data quality. We suggest that reliable estimates have yet to await more data and more realistic models.


Sign in / Sign up

Export Citation Format

Share Document