scholarly journals Past and future epidemic potential of chikungunya virus in Australia

2021 ◽  
Vol 15 (11) ◽  
pp. e0009963
Author(s):  
Timothy White ◽  
Gina Mincham ◽  
Brian L. Montgomery ◽  
Cassie C. Jansen ◽  
Xiaodong Huang ◽  
...  

Background Australia is theoretically at risk of epidemic chikungunya virus (CHIKV) activity as the principal vectors are present on the mainland Aedes aegypti) and some islands of the Torres Strait (Ae. aegypti and Ae. albopictus). Both vectors are highly invasive and adapted to urban environments with a capacity to expand their distributions into south-east Queensland and other states in Australia. We sought to estimate the epidemic potential of CHIKV, which is not currently endemic in Australia, by considering exclusively transmission by the established vector in Australia, Ae. aegypti, due to the historical relevance and anthropophilic nature of the vector. Methodology/Principal findings We estimated the historical (1995–2019) epidemic potential of CHIKV in eleven Australian locations, including the Torres Strait, using a basic reproduction number equation. We found that the main urban centres of Northern Australia could sustain an epidemic of CHIKV. We then estimated future trends in epidemic potential for the main centres for the years 2020 to 2029. We also conducted uncertainty and sensitivity analyses on the variables comprising the basic reproduction number and found high sensitivity to mosquito population size, human population size, impact of vector control and human infectious period. Conclusions/Significance By estimating the epidemic potential for CHIKV transmission on mainland Australia and the Torres Strait, we identified key areas of focus for controlling vector populations and reducing human exposure. As the epidemic potential of the virus is estimated to rise towards 2029, a greater focus on control and prevention measures should be implemented in at-risk locations.

2008 ◽  
Vol 136 (11) ◽  
pp. 1496-1510 ◽  
Author(s):  
C. LANZAS ◽  
S. BRIEN ◽  
R. IVANEK ◽  
Y. LO ◽  
P. P. CHAPAGAIN ◽  
...  

SUMMARYThe objective of this study was to address the impact of heterogeneity of infectious period and contagiousness onSalmonellatransmission dynamics in dairy cattle populations. We developed three deterministic SIR-type models with two basic infected stages (clinically and subclinically infected). In addition, model 2 included long-term shedders, which were defined as individuals with low contagiousness but long infectious period, and model 3 included super-shedders (individuals with high contagiousness and long infectious period). The simulated dynamics, basic reproduction number (R0) and critical vaccination threshold were studied. Clinically infected individuals were the main force of infection transmission for models 1 and 2. Long-term shedders had a small impact on the transmission of the infection and on the estimated vaccination thresholds. The presence of super-shedders increasesR0and decreases the effectiveness of population-wise strategies to reduce infection, making necessary the application of strategies that target this specific group.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Chaojian Shen ◽  
Mingtao Li ◽  
Wei Zhang ◽  
Ying Yi ◽  
Youming Wang ◽  
...  

Streptococcosis is one of the major infectious and contagious bacterial diseases for swine farm in southern China. The influence of various control measures on the outbreaks and transmission ofS. suisis not currently known. In this study, in order to explore effective control and prevention measures we studied a deterministic dynamic model with stage structure forS. suis. The basic reproduction numberℛ0is identified and global dynamics are completely determined byℛ0. It shows that ifℛ0<1, the disease-free equilibrium is globally stable and the disease dies out, whereas ifℛ0>1, there is a unique endemic equilibrium which is globally stable and thus the disease persists in the population. The model simulations well agree with new clinical cases and the basic reproduction number of this model is about 1.1333. Some sensitivity analyses ofℛ0in terms of the model parameters are given. Our study demonstrates that combination of vaccination and disinfection of the environment are the useful control strategy forS. suis.


2020 ◽  
Vol 26 (10) ◽  
pp. 2429-2431
Author(s):  
Najmul Haider ◽  
Francesco Vairo ◽  
Giuseppe Ippolito ◽  
Alimuddin Zumla ◽  
Richard A. Kock

2020 ◽  
Vol 14 (11) ◽  
pp. e0008811
Author(s):  
Joseph Sichone ◽  
Martin C. Simuunza ◽  
Bernard M. Hang’ombe ◽  
Mervis Kikonko

Background Plague is a re-emerging flea-borne infectious disease of global importance and in recent years, Zambia has periodically experienced increased incidence of outbreaks of this disease. However, there are currently no studies in the country that provide a quantitative assessment of the ability of the disease to spread during these outbreaks. This limits our understanding of the epidemiology of the disease especially for planning and implementing quantifiable and cost-effective control measures. To fill this gap, the basic reproduction number, R0, for bubonic plague was estimated in this study, using data from the 2015 Nyimba district outbreak, in the Eastern province of Zambia. R0 is the average number of secondary infections arising from a single infectious individual during their infectious period in an entirely susceptible population. Methodology/Principal findings Secondary epidemic data for the most recent 2015 Nyimba district bubonic plague outbreak in Zambia was analyzed. R0 was estimated as a function of the average epidemic doubling time based on the initial exponential growth rate of the outbreak and the average infectious period for bubonic plague. R0 was estimated to range between 1.5599 [95% CI: 1.382–1.7378] and 1.9332 [95% CI: 1.6366–2.2297], with average of 1.7465 [95% CI: 1.5093–1.9838]. Further, an SIR deterministic mathematical model was derived for this infection and this estimated R0 to be between 1.4 to 1.5, which was within the range estimated above. Conclusions/Significance This estimated R0 for bubonic plague is an indication that each bubonic plague case can typically give rise to almost two new cases during these outbreaks. This R0 estimate can now be used to quantitatively analyze and plan measurable interventions against future plague outbreaks in Zambia.


Author(s):  
Ann Barber ◽  
John M Griffin ◽  
Miriam Casey ◽  
Aine Collins ◽  
Elizabeth A Lane ◽  
...  

Background: The transmissibility of SARS-CoV-2 determines both the ability of the virus to invade a population and the strength of intervention that would be required to contain or eliminate the spread of infection. The basic reproduction number, R0, provides a quantitative measure of the transmission potential of a pathogen. Objective: Conduct a scoping review of the available literature providing estimates of R0 for SARS-CoV-2, provide an overview of the drivers of variation in R0 estimates and the considerations taken in the calculation of the parameter. Design: Scoping review of available literature between the 01 December 2019 and 07 May 2020. Data sources: Both peer-reviewed and pre-print articles were searched for on PubMed, Google Scholar, MedRxiv and BioRxiv. Selection criteria: Studies were selected for review if (i) the estimation of R0 represented either the initial stages of the outbreak or the initial stages of the outbreak prior to the onset of widespread population restriction (lockdown), (ii) the exact dates of the study period were provided and (iii) the study provided primary estimates of R0. Results: A total of 20 R0 estimates were extracted from 15 studies. There was substantial variation in the estimates reported. Estimates derived from mathematical models fell within a wider range of 1.94-6.94 than statistical models which fell between the range of 2.2 to 4.4. Several studies made assumptions about the length of the infectious period which ranged from 5.8-20 days and the serial interval which ranged from 4.41-14 days. For a given set of parameters a longer duration of infectiousness or a longer serial interval equates to a higher R0. Several studies took measures to minimise bias in early case reporting, to account for the potential occurrence of super-spreading events, and to account for early sub-exponential epidemic growth. Conclusions: The variation in reported estimates of R0 reflects the complex nature of the parameter itself, including the context (i.e. social/spatial structure), the methodology used to estimate the parameter, and model assumptions. R0 is a fundamental parameter in the study of infectious disease dynamics however it provides limited practical applicability outside of the context in which it was estimated, and should be calculated and interpreted with this in mind.


2007 ◽  
Vol 5 (20) ◽  
pp. 363-371 ◽  
Author(s):  
Simon Gubbins ◽  
Simon Carpenter ◽  
Matthew Baylis ◽  
James L.N Wood ◽  
Philip S Mellor

Since 1998 bluetongue virus (BTV), which causes bluetongue, a non-contagious, insect-borne infectious disease of ruminants, has expanded northwards in Europe in an unprecedented series of incursions, suggesting that there is a risk to the large and valuable British livestock industry. The basic reproduction number, R 0 , provides a powerful tool with which to assess the level of risk posed by a disease. In this paper, we compute R 0 for BTV in a population comprising two host species, cattle and sheep. Estimates for each parameter which influences R 0 were obtained from the published literature, using those applicable to the UK situation wherever possible. Moreover, explicit temperature dependence was included for those parameters for which it had been quantified. Uncertainty and sensitivity analyses based on Latin hypercube sampling and partial rank correlation coefficients identified temperature, the probability of transmission from host to vector and the vector to host ratio as being most important in determining the magnitude of R 0 . The importance of temperature reflects the fact that it influences many processes involved in the transmission of BTV and, in particular, the biting rate, the extrinsic incubation period and the vector mortality rate.


Author(s):  
T. O. Akinwumi ◽  
I. A. Olopade ◽  
A. O. Adesanya ◽  
M. O. Alabi

In this paper, a mathematical model for the transmission of HIV/AIDS with early treatment is developed and analyzed to gain insight into early treatment of HIV/AIDS and other epidemiological features that cause the progression from HIV to full blown AIDS. We established the basic reproduction number which is the average number of new secondary infection generated by a single infected individual during infectious period. The analysis shows that the disease free equilibrium is locally and globally asymptotically stable whenever the threshold quantity   is less than unity i.e. Numerical analysis shows that the early treatment of latently infected individuals reduces the dynamical progression to full blown AIDS. The result also showed that immunity boosted substances increase the red blood cells, sensitivity analysis of basic reproduction number with respect to parameters showed that effective contact rate must not exceed 0.3 to avoid endemic stage.


2019 ◽  
Vol 27 (01) ◽  
pp. 83-105 ◽  
Author(s):  
GUSTAVO CRUZ-PACHECO ◽  
LOURDES ESTEVA ◽  
CLAUDIA PIO FERREIRA

In this work we formulate a mathematical model to assess the importance of sexual transmission during the Zika virus outbreak that occurred in Rio de Janeiro, Brazil, in 2015. To this end, we deduce from the model an analytical expression of the basic reproduction number of Zika, [Formula: see text], in terms of the vectorial and sexual transmissions, and we use the estimations given in Ref. 1 [Villela DAM, Bastos LS, de Carvalho LM, Cruz OG, Gomes MFC, Durovni B, Lemos MC, Saraceni V, Coelho FC, Codeço CT, Zika in Rio de Janeiro: Assessment of basic reproduction number and comparison with dengue outbreaks, Epidemiol Infect 145(8):1649–1657, 2017] for the [Formula: see text] values of Zika virus and dengue virus epidemics in Rio de Janeiro to evaluate the contribution of sexual transmission of Zika virus. According to the obtained results, sexual transmission (pure plus mediated by vector transmission) contributes from 23% to 46% for the [Formula: see text] increment. Also, an asymmetric sexual transmission between men and women can explain the fact that the incidence of Zika virus in women was 60% higher than in man during the 2015 epidemics. We also carry out a sensitivity analysis using [Formula: see text] as the output parameter. The results of this analysis have shown that the transmission rate between human and mosquito populations, the mosquito mortality rate, and the human infectious period are the parameters that contribute more to the [Formula: see text] variation, highlighting the importance of vector control to halt disease transmission.


2019 ◽  
Author(s):  
Simon Gubbins

SummaryIn recent years, lumpy skin disease virus (LSDV) has emerged as a major threat to cattle outside Africa, where it is endemic. Although evidence suggests that LSDV is transmitted by the bites of blood sucking arthropods, few studies have assessed the risk of transmission posed by particular vector species. Here this risk is assessed by calculating the basic reproduction number (R0) for transmission of LSDV by five species of biting insect: the stable fly, Stomoxys calcitrans, the biting midge, Culicoides nubeculosus, and three mosquito species, Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. Parameters relating to mechanical transmission of LSDV were estimated using new analyses of previously-published data from transmission experiments, while vector life history parameters were derived from the published literature. Uncertainty and sensitivity analyses were used to compute R0 for each species and to identify those parameters which influence its magnitude. Results suggest that S. calcitrans is likely to be the most efficient at transmitting LSDV, with Ae. aegypti also an efficient vector. By contrast, C. nubeculosus, An. stephensi, and Cx. quinquefasciatus are likely to be inefficient vectors of LSDV. However, there is considerable uncertainty associated with the estimates of R0, reflecting uncertainty in most of the constituent parameters. Sensitivity analysis suggests that future experimental work should focus on estimating the probability of transmission from insect to bovine and on the virus inactivation rate in insects.


Author(s):  
Pratip Shil ◽  
Nitin M. Atre ◽  
Avinash A. Patil ◽  
Babasaheb V. Tandale ◽  
Priya Abraham

Sign in / Sign up

Export Citation Format

Share Document