scholarly journals Comparing Platforms for C. elegans Mutant Identification Using High-Throughput Whole-Genome Sequencing

PLoS ONE ◽  
2008 ◽  
Vol 3 (12) ◽  
pp. e4012 ◽  
Author(s):  
Yufeng Shen ◽  
Sumeet Sarin ◽  
Ye Liu ◽  
Oliver Hobert ◽  
Itsik Pe'er
PLoS ONE ◽  
2010 ◽  
Vol 5 (11) ◽  
pp. e15435 ◽  
Author(s):  
Maria Doitsidou ◽  
Richard J. Poole ◽  
Sumeet Sarin ◽  
Henry Bigelow ◽  
Oliver Hobert

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Francesca Jean ◽  
Susan Stasiuk ◽  
Tatiana Maroilley ◽  
Catherine Diao ◽  
Andrew Galbraith ◽  
...  

Abstract Background Intragenic modifiers (in-phase, second-site variants) are known to have dramatic effects on clinical outcomes, affecting disease attributes such as severity or age of onset. However, despite their clinical importance, the focus of many genetic screens in model systems is on the discovery of extragenic variants, with many labs still relying upon more traditional methods to identify modifiers. However, traditional methods such as PCR and Sanger sequencing can be time-intensive and do not permit a thorough understanding of the intragenic modifier effects in the context of non-isogenic genomic backgrounds. Results Here, we apply high throughput approaches to identify and understand intragenic modifiers using Caenorhabditis elegans. Specifically, we applied whole genome sequencing (WGS) to a mutagen-induced forward genetic screen to identify intragenic suppressors of a temperature-sensitive zyg-1(it25) allele in C. elegans. ZYG-1 is a polo kinase that is important for centriole function and cell divisions, and mutations that truncate its human orthologue, PLK4, have been associated with microcephaly. Combining WGS and CRISPR/Cas9, we rapidly identify intragenic modifiers, show that these variants are distributed non-randomly throughout zyg-1 and that genomic context plays an important role on phenotypic outcomes. Conclusions Ultimately, our work shows that WGS facilitates high-throughput identification of intragenic modifiers in clinically relevant genes by reducing hands-on research time and overall costs and by allowing thorough understanding of the intragenic phenotypic effects in the context of different genetic backgrounds.


2022 ◽  
Author(s):  
Jason Nguyen ◽  
Rebecca Hickman ◽  
Tracy Lee ◽  
Natalie Prystajecky ◽  
John Tyson

This procedure provides instructions on how to prepare DNA libraries for whole genome sequencing on an Illumina MiSeq or NextSeq using Illumina’s DNA Prep Library Preparation Kit scaled to half reaction volumes with modifications to the post-PCR procedures; tagmentation stop buffer and associated washes are removed and libraries are pooled post PCR then a single size selection is performed. This protocol is used to sequence SARS-CoV-2 using the cDNA/PCR protocol: https://dx.doi.org/10.17504/protocols.io.b3viqn4e


2014 ◽  
Vol 14 (1) ◽  
pp. 49 ◽  
Author(s):  
Galina Sergeev ◽  
Sambit Roy ◽  
Michael Jarek ◽  
Viktor Zapolskii ◽  
Dieter E Kaufmann ◽  
...  

2008 ◽  
Vol 5 (2) ◽  
pp. 183-188 ◽  
Author(s):  
LaDeana W Hillier ◽  
Gabor T Marth ◽  
Aaron R Quinlan ◽  
David Dooling ◽  
Ginger Fewell ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (11) ◽  
pp. e13922 ◽  
Author(s):  
Katherine P. Weber ◽  
Subhajyoti De ◽  
Iwanka Kozarewa ◽  
Daniel J. Turner ◽  
M. Madan Babu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document