scholarly journals Whole genome sequencing facilitates intragenic variant interpretation following modifier screening in C. elegans

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Francesca Jean ◽  
Susan Stasiuk ◽  
Tatiana Maroilley ◽  
Catherine Diao ◽  
Andrew Galbraith ◽  
...  

Abstract Background Intragenic modifiers (in-phase, second-site variants) are known to have dramatic effects on clinical outcomes, affecting disease attributes such as severity or age of onset. However, despite their clinical importance, the focus of many genetic screens in model systems is on the discovery of extragenic variants, with many labs still relying upon more traditional methods to identify modifiers. However, traditional methods such as PCR and Sanger sequencing can be time-intensive and do not permit a thorough understanding of the intragenic modifier effects in the context of non-isogenic genomic backgrounds. Results Here, we apply high throughput approaches to identify and understand intragenic modifiers using Caenorhabditis elegans. Specifically, we applied whole genome sequencing (WGS) to a mutagen-induced forward genetic screen to identify intragenic suppressors of a temperature-sensitive zyg-1(it25) allele in C. elegans. ZYG-1 is a polo kinase that is important for centriole function and cell divisions, and mutations that truncate its human orthologue, PLK4, have been associated with microcephaly. Combining WGS and CRISPR/Cas9, we rapidly identify intragenic modifiers, show that these variants are distributed non-randomly throughout zyg-1 and that genomic context plays an important role on phenotypic outcomes. Conclusions Ultimately, our work shows that WGS facilitates high-throughput identification of intragenic modifiers in clinically relevant genes by reducing hands-on research time and overall costs and by allowing thorough understanding of the intragenic phenotypic effects in the context of different genetic backgrounds.

PLoS ONE ◽  
2008 ◽  
Vol 3 (12) ◽  
pp. e4012 ◽  
Author(s):  
Yufeng Shen ◽  
Sumeet Sarin ◽  
Ye Liu ◽  
Oliver Hobert ◽  
Itsik Pe'er

2022 ◽  
Author(s):  
Jason Nguyen ◽  
Rebecca Hickman ◽  
Tracy Lee ◽  
Natalie Prystajecky ◽  
John Tyson

This procedure provides instructions on how to prepare DNA libraries for whole genome sequencing on an Illumina MiSeq or NextSeq using Illumina’s DNA Prep Library Preparation Kit scaled to half reaction volumes with modifications to the post-PCR procedures; tagmentation stop buffer and associated washes are removed and libraries are pooled post PCR then a single size selection is performed. This protocol is used to sequence SARS-CoV-2 using the cDNA/PCR protocol: https://dx.doi.org/10.17504/protocols.io.b3viqn4e


2014 ◽  
Vol 14 (1) ◽  
pp. 49 ◽  
Author(s):  
Galina Sergeev ◽  
Sambit Roy ◽  
Michael Jarek ◽  
Viktor Zapolskii ◽  
Dieter E Kaufmann ◽  
...  

2008 ◽  
Vol 5 (2) ◽  
pp. 183-188 ◽  
Author(s):  
LaDeana W Hillier ◽  
Gabor T Marth ◽  
Aaron R Quinlan ◽  
David Dooling ◽  
Ginger Fewell ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (11) ◽  
pp. e13922 ◽  
Author(s):  
Katherine P. Weber ◽  
Subhajyoti De ◽  
Iwanka Kozarewa ◽  
Daniel J. Turner ◽  
M. Madan Babu ◽  
...  

Author(s):  
Hannah Wang ◽  
Jacob A. Miller ◽  
Michelle Verghese ◽  
Mamdouh Sibai ◽  
Daniel Solis ◽  
...  

ABSTRACTBackgroundEmergence of SARS-CoV-2 variants with concerning phenotypic mutations is of public health interest. Genomic surveillance is an important tool for pandemic response, but many laboratories do not have the resources to support population-level sequencing. We hypothesized that a spike genotyping nucleic acid amplification test (NAAT) could facilitate high-throughput variant surveillance.MethodsWe designed and analytically validated a one-step multiplex allele-specific reverse transcriptase polymerase chain reaction (RT-qPCR) to detect three non-synonymous spike protein mutations (L452R, E484K, N501Y). Assay specificity was validated with next-generation whole-genome sequencing. We then screened a large cohort of SARS-CoV-2 positive specimens from our San Francisco Bay Area population.ResultsBetween December 1, 2020 and March 1, 2021, we screened 4,049 unique infections by genotyping RT-qPCR, with an assay failure rate of 2.8%. We detected 1,567 L452R mutations (38.7%), 34 N501Y mutations (0.84%), 22 E484K mutations (0.54%), and 3 (0.07%) E484K+N501Y mutations. The assay had near-perfect (98-100%) concordance with whole-genome sequencing in a validation subset of 229 specimens, and detected B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.526, and P.2 variants, among others. The assay revealed rapid emergence of L452R in our population, with a prevalence of 24.8% in December 2020 that increased to 62.5% in March 2021.ConclusionsWe developed and clinically implemented a genotyping RT-qPCR to conduct high-throughput SARS-CoV-2 variant screening. This approach can be adapted for emerging mutations and immediately implemented in laboratories already performing NAAT worldwide using existing equipment, personnel, and extracted nucleic acid.Summary / Key PointsEmergence of SARS-CoV-2 variants with concerning phenotypes is of public health interest. We developed a multiplex genotyping RT-qPCR to rapidly detect L452R, E484K, and N501Y with high sequencing concordance. This high-throughput alternative to resource-intensive sequencing enabled surveillance of L452R emergence.


Sign in / Sign up

Export Citation Format

Share Document