scholarly journals Targeting the PI3K/Akt Cell Survival Pathway to Induce Cell Death of HIV-1 Infected Macrophages with Alkylphospholipid Compounds

PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e13121 ◽  
Author(s):  
Amanda Lucas ◽  
Yuri Kim ◽  
Omayra Rivera-Pabon ◽  
Sunju Chae ◽  
Dong-Hyun Kim ◽  
...  
Medicina ◽  
2019 ◽  
Vol 55 (6) ◽  
pp. 297 ◽  
Author(s):  
Borrajo ◽  
Ranazzi ◽  
Pollicita ◽  
Bellocchi ◽  
Salpini ◽  
...  

Background and objectives: To enter the target cell, HIV-1 binds not only CD4 but also a co-receptor β-chemokine receptor 5 (CCR5) or α chemokine receptor 4 (CXCR4). Limited information is available on the impact of co-receptor usage on HIV-1 replication in monocyte-derived macrophages (MDM) and on the homeostasis of this important cellular reservoir. Materials and Methods: Replication (measured by p24 production) of the CCR5-tropic 81A strain increased up to 10 days post-infection and then reached a plateau. Conversely, the replication of the CXCR4-tropic NL4.3 strain (after an initial increase up to day 7) underwent a drastic decrease becoming almost undetectable after 10 days post-infection. The ability of CCR5-tropic and CXCR4-tropic strains to induce cell death in MDM was then evaluated. While for CCR5-tropic 81A the rate of apoptosis in MDM was comparable to uninfected MDM, the infection of CXCR4-tropic NL4.3 in MDM was associated with a rate of 14.3% of apoptotic cells at day 6 reaching a peak of 43.5% at day 10 post-infection. Results: This suggests that the decrease in CXCR4-tropic strain replication in MDM can be due to their ability to induce cell death in MDM. The increase in apoptosis was paralleled with a 2-fold increase in the phosphorylated form of p38 compared to WT. Furthermore, microarray analysis showed modulation of proapoptotic and cancer-related genes induced by CXCR4-tropic strains starting from 24 h after infection, whereas CCR5 viruses modulated the expression of genes not correlated with apoptotic-pathways. Conclusions: In conclusion, CXCR4-tropic strains can induce a remarkable depletion of MDM. Conversely, MDM can represent an important cellular reservoir for CCR5-tropic strains supporting the role of CCR5-usage in HIV-1 pathogenesis and as a pharmacological target to contribute to an HIV-1 cure.


2017 ◽  
Vol 312 (4) ◽  
pp. R559-R568 ◽  
Author(s):  
Oluseyi Ogunleye ◽  
Bertha Campo ◽  
Diana Herrera ◽  
Emiel D. Post Uiterweer ◽  
Kirk P. Conrad

Preeclampsia is a hypertensive syndrome that manifests after 20 wk of gestation. Contemporary understanding of the maternal-fetal interface in preeclampsia suggests a major role for placental oxidative stress resulting from ischemia-reperfusion injury. We hypothesized that the pregnancy hormone relaxin would reduce cytotrophoblast apoptosis and necrosis (aponecrosis) and, hence, the export of placental debris into the maternal circulation. If so, then relaxin might be employed as a therapeutic intervention to diminish the activation of the maternal systemic inflammatory response central to the development of clinical disease. HTR-8/SVneo cells, a model for first trimester extravillous trophoblast, were subjected to serum deprivation and hypoxia or hypoxia-reoxygenation. The cells were treated with recombinant human relaxin or vehicle and apoptosis and/or necrosis evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), CellEvent Caspase-3/7 and SYTOX AADvanced kit, and propidium iodide staining as determined by fluorescence microscopy or flow cytometry. To interrogate mechanisms of relaxin cytoprotection, HTR-8/SVneo cells were pretreated with pharmacological inhibitors of PI3-kinase LY294004, Akt/PKB MK-2206, or DMSO vehicle. HTR-8/SVneo cell identity was first confirmed by RT-PCR. The cells expressed placental alkaline phosphatase, aromatase, and human leukocyte antigen G. In addition, the cells expressed the relaxin receptor RXFP1 as well as H1 and H2 relaxins. Serum deprivation and hypoxia increased apoptotic cell death in HTR-8/SVneo cells, which was significantly ameliorated by concurrent treatment with relaxin. Serum deprivation and hypoxia-reoxygenation increased necrotic cell death in HTR-8/SVneo cells, which was also significantly rescued by concurrent treatment with relaxin. Pretreatment with LY294002 or MK-2206, to inhibit the phosphatidylinositol 3-kinase-Akt/protein kinase B cell survival pathway, significantly blunted the cytoprotective effect of relaxin. We demonstrated trophoblast cytoprotection by intervention with supraphysiological concentrations of relaxin, a process in part mediated through the PI3-kinase-Akt/PKB cell survival pathway. These results provide further rationale for clinical investigation of relaxin as a potential therapeutic in preeclampsia.


2017 ◽  
Author(s):  
Ellen Sletten ◽  
Rachael A. Day ◽  
Daniel A. Estabrook ◽  
Jessica K. Logan

<p>Photodynamic therapy (PDT) requires photosensitizer, light, and oxygen to induce cell death. The majority of efforts to advance PDT focus only on the first two components. Here, we employ perfluorocarbon nanoemulsions to simultaneously deliver oxygen and photosensitizer. We find that the implementation of fluorous soluble photosensitizers enhances the efficacy of PDT. </p>


Sign in / Sign up

Export Citation Format

Share Document