scholarly journals Genetic Diversity and Ecosystem Functioning in the Face of Multiple Stressors

PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e45007 ◽  
Author(s):  
Fabian Roger ◽  
Anna Godhe ◽  
Lars Gamfeldt
2004 ◽  
Vol 85 (11) ◽  
pp. 3173-3188 ◽  
Author(s):  
Peter Simmonds

In the 15 years since the discovery of hepatitis C virus (HCV), much has been learned about its role as a major causative agent of human liver disease and its ability to persist in the face of host-cell defences and the immune system. This review describes what is known about the diversity of HCV, the current classification of HCV genotypes within the family Flaviviridae and how this genetic diversity contributes to its pathogenesis. On one hand, diversification of HCV has been constrained by its intimate adaptation to its host. Despite the >30 % nucleotide sequence divergence between genotypes, HCV variants nevertheless remain remarkably similar in their transmission dynamics, persistence and disease development. Nowhere is this more evident than in the evolutionary conservation of numerous evasion methods to counteract the cell's innate antiviral defence pathways; this series of highly complex virus–host interactions may represent key components in establishing its ‘ecological niche’ in the human liver. On the other hand, the mutability and large population size of HCV enables it to respond very rapidly to new selection pressures, manifested by immune-driven changes in T- and B-cell epitopes that are encountered on transmission between individuals with different antigen-recognition repertoires. If human immunodeficiency virus type 1 is a precedent, future therapies that target virus protease or polymerase enzymes may also select very rapidly for antiviral-resistant mutants. These contrasting aspects of conservatism and adaptability provide a fascinating paradigm in which to explore the complex selection pressures that underlie the evolution of HCV and other persistent viruses.


2020 ◽  
Author(s):  
Matthew A. Barbour ◽  
Daniel J. Kliebenstein ◽  
Jordi Bascompte

Genetic diversity provides the raw material for species to adapt and persist in the face of climate change. Yet, the extent to which these genetic effects scale at the level of ecological communities remains unclear. Here we experimentally test the effect of plant genetic diversity on the persistence of an insect food web under a current and future warming scenario. We found that plant genetic diversity increased food-web persistence by increasing the intrinsic growth rates of species across multiple trophic levels. This positive effect was robust to a 3°C warming scenario and resulted from allelic variation at two genes that control the biosynthesis of chemical defenses. Our results suggest that the ongoing loss of genetic diversity may undermine the persistence and functioning of ecosystems in a changing world.One Sentence SummaryThe loss of genetic diversity accelerates the extinction of inter-connected species from an experimental food web.


Author(s):  
Javier Puy ◽  
Carlos P Carmona ◽  
Hana Dvořáková ◽  
Vít Latzel ◽  
Francesco de Bello

Abstract Background and Aims The observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation. Methods A glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population. Key Results Parental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins. Conclusions A diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.


2019 ◽  
Vol 286 (1913) ◽  
pp. 20191857 ◽  
Author(s):  
Anita Narwani ◽  
Marta Reyes ◽  
Aaron Louis Pereira ◽  
Hannele Penson ◽  
Stuart R. Dennis ◽  
...  

A major challenge in ecology is to understand determinants of ecosystem functioning and stability in the face of disturbance. Some important species can strongly shape community structure and ecosystem functioning, but their impacts and interactions on ecosystem-level responses to disturbance are less well known. Shallow ponds provide a model system in which to study the effects of such species because some taxa mitigate transitions between alternative ecosystem states caused by eutrophication. We performed pond experiments to test how two foundation species (a macrophyte and a mussel) affected the biomass of planktonic primary producers and its stability in response to nutrient additions. Individually, each species reduced phytoplankton biomass and tended to increase rates of recovery from disturbance, but together the species reversed these effects, particularly with larger nutrient additions. This reversal was mediated by high cyanobacterial dominance of the community and a resulting loss of trait evenness. Effects of the foundation species on primary producer biomass were associated with effects on other ecosystem properties, including turbidity and dissolved oxygen. Our work highlights the important role of foundation species and their interactive effects in determining responses of ecosystem functioning to disturbance.


mSystems ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Cynthia L. Darnell ◽  
Peter D. Tonner ◽  
Jordan G. Gulli ◽  
Scott C. Schmidler ◽  
Amy K. Schmid

ABSTRACT To ensure survival in the face of stress, microorganisms employ inducible damage repair pathways regulated by extensive and complex gene networks. Many archaea, microorganisms of the third domain of life, persist under extremes of temperature, salinity, and pH and under other conditions. In order to understand the cause-effect relationships between the dynamic function of the stress network and ultimate physiological consequences, this study characterized the physiological role of nearly one-third of all regulatory proteins known as transcription factors (TFs) in an archaeal organism. Using a unique quantitative phenotyping approach, we discovered functions for many novel TFs and revealed important secondary functions for known TFs. Surprisingly, many TFs are required for resisting multiple stressors, suggesting cross-regulation of stress responses. Through extensive validation experiments, we map the physiological roles of these novel TFs in stress response back to their position in the regulatory network wiring. This study advances understanding of the mechanisms underlying how microorganisms resist extreme stress. Given the generality of the methods employed, we expect that this study will enable future studies on how regulatory networks adjust cellular physiology in a diversity of organisms. Gene regulatory networks (GRNs) are critical for dynamic transcriptional responses to environmental stress. However, the mechanisms by which GRN regulation adjusts physiology to enable stress survival remain unclear. Here we investigate the functions of transcription factors (TFs) within the global GRN of the stress-tolerant archaeal microorganism Halobacterium salinarum. We measured growth phenotypes of a panel of TF deletion mutants in high temporal resolution under heat shock, oxidative stress, and low-salinity conditions. To quantitate the noncanonical functional forms of the growth trajectories observed for these mutants, we developed a novel modeling framework based on Gaussian process regression and functional analysis of variance (FANOVA). We employ unique statistical tests to determine the significance of differential growth relative to the growth of the control strain. This analysis recapitulated known TF functions, revealed novel functions, and identified surprising secondary functions for characterized TFs. Strikingly, we observed that the majority of the TFs studied were required for growth under multiple stress conditions, pinpointing regulatory connections between the conditions tested. Correlations between quantitative phenotype trajectories of mutants are predictive of TF-TF connections within the GRN. These phenotypes are strongly concordant with predictions from statistical GRN models inferred from gene expression data alone. With genome-wide and targeted data sets, we provide detailed functional validation of novel TFs required for extreme oxidative stress and heat shock survival. Together, results presented in this study suggest that many TFs function under multiple conditions, thereby revealing high interconnectivity within the GRN and identifying the specific TFs required for communication between networks responding to disparate stressors. IMPORTANCE To ensure survival in the face of stress, microorganisms employ inducible damage repair pathways regulated by extensive and complex gene networks. Many archaea, microorganisms of the third domain of life, persist under extremes of temperature, salinity, and pH and under other conditions. In order to understand the cause-effect relationships between the dynamic function of the stress network and ultimate physiological consequences, this study characterized the physiological role of nearly one-third of all regulatory proteins known as transcription factors (TFs) in an archaeal organism. Using a unique quantitative phenotyping approach, we discovered functions for many novel TFs and revealed important secondary functions for known TFs. Surprisingly, many TFs are required for resisting multiple stressors, suggesting cross-regulation of stress responses. Through extensive validation experiments, we map the physiological roles of these novel TFs in stress response back to their position in the regulatory network wiring. This study advances understanding of the mechanisms underlying how microorganisms resist extreme stress. Given the generality of the methods employed, we expect that this study will enable future studies on how regulatory networks adjust cellular physiology in a diversity of organisms.


Sign in / Sign up

Export Citation Format

Share Document