scholarly journals Long-Term In Vivo Imaging of Multiple Organs at the Single Cell Level

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e52087 ◽  
Author(s):  
Benny J. Chen ◽  
Yiqun Jiao ◽  
Ping Zhang ◽  
Albert Y. Sun ◽  
Geoffrey S. Pitt ◽  
...  
Brain ◽  
2017 ◽  
Vol 140 (6) ◽  
pp. 1542-1543
Author(s):  
Jochen Herms ◽  
Christian Schön

2020 ◽  
Vol 21 (21) ◽  
pp. 7896
Author(s):  
Jun Nakayama ◽  
Ryohei Saito ◽  
Yusuke Hayashi ◽  
Nobuo Kitada ◽  
Shota Tamaki ◽  
...  

Bioluminescence imaging (BLI) is useful to monitor cell movement and gene expression in live animals. However, D-luciferin has a short wavelength (560 nm) which is absorbed by tissues and the use of near-infrared (NIR) luciferin analogues enable high sensitivity in vivo BLI. The AkaLumine-AkaLuc BLI system (Aka-BLI) can detect resolution at the single-cell level; however, it has a clear hepatic background signal. Here, to enable the highly sensitive detection of bioluminescence from the surrounding liver tissues, we focused on seMpai (C15H16N3O2S) which has been synthesized as a luciferin analogue and has high luminescent abilities as same as AkaLumine. We demonstrated that seMpai BLI could detect micro-signals near the liver without any background signal. The solution of seMpai was neutral; therefore, seMpai imaging did not cause any adverse effect in mice. seMpai enabled a highly sensitive in vivo BLI as compared to previous techniques. Our findings suggest that the development of a novel mutated luciferase against seMpai may enable a highly sensitive BLI at the single-cell level without any background signal. Novel seMpai BLI system can be used for in vivo imaging in the fields of life sciences and medicine.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36246 ◽  
Author(s):  
Rodolphe Suspène ◽  
Andreas Meyerhans

2021 ◽  
Author(s):  
Sundeep Khosla ◽  
Dominik Saul ◽  
Robyn Laura Kosinsky ◽  
Elizabeth Atkinson ◽  
Madison Doolittle ◽  
...  

Abstract Although cellular senescence is increasingly recognized as driving multiple age-related co-morbidities through the senescence-associated secretory phenotype (SASP), in vivo senescent cell identification, particularly in bulk or single cell RNA-sequencing (scRNA-seq) data remains challenging. Here, we generated a novel gene set (SenMayo) and first validated its enrichment in bone biopsies from two aged human cohorts. SenMayo also identified senescent cells in aged murine brain tissue, demonstrating applicability across tissues and species. For direct validation, we demonstrated significant reductions in SenMayo in bone following genetic clearance of senescent cells in mice, with similar findings in adipose tissue from humans in a pilot study of pharmacological senescent cell clearance. In direct comparisons, SenMayo outperformed all six existing senescence/SASP gene sets in identifying senescent cells across tissues and in demonstrating responses to senescent cell clearance. We next used SenMayo to identify senescent hematopoietic or mesenchymal cells at the single cell level from publicly available human and murine bone marrow/bone scRNA-seq data and identified monocytic and osteolineage cells, respectively, as showing the highest levels of senescence/SASP genes. Using pseudotime and cellular communication patterns, we found senescent hematopoietic and mesenchymal cells communicated with other cells through common pathways, including the Macrophage Migration Inhibitory Factor (MIF) pathway, which has been implicated not only in inflammation but also in immune evasion, an important property of senescent cells. Thus, SenMayo identifies senescent cells across tissues and species with high fidelity. Moreover, using this senescence panel, we were able to characterize senescent cells at the single cell level and identify key intercellular signaling pathways associated with these cells, which may be particularly useful for evolving efforts to map senescent cells (e.g., SenNet). In addition, SenMayo represents a potentially clinically applicable panel for monitoring senescent cell burden with aging and other conditions as well as in studies of senolytic drugs.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Patrick Lenz ◽  
Fabienne Hilgers ◽  
Alina Burmeister ◽  
Leonie Zimmermann ◽  
Kristina Volkenborn ◽  
...  

Abstract Background Bacillus subtilis is one of the most important microorganisms for recombinant protein production. It possesses the GRAS (generally recognized as safe) status and a potent protein secretion capacity. Secretory protein production greatly facilitates downstream processing and thus significantly reduces costs. However, not all heterologous proteins are secreted and intracellular production poses difficulties for quantification. To tackle this problem, we have established a so-called intracellular split GFP (iSplit GFP) assay in B. subtilis as a tool for the in vivo protein detection during expression in batch cultures and at a single-cell level. For the iSplit GFP assay, the eleventh β-sheet of sfGFP is fused to a target protein and can complement a detector protein consisting of the respective truncated sfGFP (GFP1-10) to form fluorescent holo-GFP. Results As proof of concept, the GFP11-tag was fused C-terminally to the E. coli β-glucuronidase GUS, resulting in fusion protein GUS11. Variable GUS and GUS11 production levels in B. subtilis were achieved by varying the ribosome binding site via spacers of increasing lengths (4–12 nucleotides) for the GUS-encoding gene. Differences in intracellular enzyme accumulation were determined by measuring the GUS11 enzymatic activity and subsequently by adding the detector protein to respective cell extracts. Moreover, the detector protein was co-produced with the GUS11 using a two-plasmid system, which enabled the in vivo detection and online monitoring of glucuronidase production. Using this system in combination with flow cytometry and microfluidics, we were able to monitor protein production at a single-cell level thus yielding information about intracellular protein distribution and culture heterogeneity. Conclusion Our results demonstrate that the iSplit GFP assay is suitable for the detection, quantification and online monitoring of recombinant protein production in B. subtilis during cultivation as well as for analyzing production heterogeneity and intracellular localization at a single-cell level. Graphic abstract


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Dominik Pförringer ◽  
Matthias M. Aitzetmüller ◽  
Elizabeth A. Brett ◽  
Khosrow S. Houschyar ◽  
Richard Schäfer ◽  
...  

Introduction. Adipose-derived stromal cells (ASCs) are a promising resource for wound healing and tissue regeneration because of their multipotent properties and cytokine secretion. ASCs are typically isolated from the subcutaneous fat compartment, but can also be obtained from visceral adipose tissue. The data on their equivalence diverges. The present study analyzes the cell-specific gene expression profiles and functional differences of ASCs derived from the subcutaneous (S-ASCs) and the visceral (V-ASCs) compartment. Material and Methods. Subcutaneous and visceral ASCs were obtained from mouse inguinal fat and omentum. The transcriptional profiles of the ASCs were compared on single-cell level. S-ASCs and V-ASCs were then compared in a murine wound healing model to evaluate their regenerative functionality. Results. On a single-cell level, S-ASCs and V-ASCs displayed distinct transcriptional profiles. Specifically, significant differences were detected in genes associated with neoangiogenesis and tissue remodeling (for example, Ccl2, Hif1α, Fgf7, and Igf). In addition, a different subpopulation ecology could be identified employing a cluster model. Nevertheless, both S-ASCs and V-ASCs induced accelerated healing rates and neoangiogenesis in a mouse wound healing model. Conclusion. With similar therapeutic potential in vivo, the significantly different gene expression patterns of ASCs from the subcutaneous and visceral compartments suggest different signaling pathways underlying their efficacy. This study clearly demonstrates that review of transcriptional results in vivo is advisable to confirm the tentative effect of cell therapies.


Sign in / Sign up

Export Citation Format

Share Document