scholarly journals The Transcription Factor Runx2 Is under Circadian Control in the Suprachiasmatic Nucleus and Functions in the Control of Rhythmic Behavior

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54317 ◽  
Author(s):  
Meghan E. Reale ◽  
Ian C. Webb ◽  
Xu Wang ◽  
Ricardo M. Baltazar ◽  
Lique M. Coolen ◽  
...  
2021 ◽  
Vol 23 (1) ◽  
pp. 229
Author(s):  
Arthur H. Cheng ◽  
Samuel W. Fung ◽  
Sara Hegazi ◽  
Osama Hasan Mustafa Hasan Abdalla ◽  
Hai-Ying Mary Cheng

In mammals, the hypothalamic suprachiasmatic nucleus (SCN) functions as the central circadian pacemaker, orchestrating behavioral and physiological rhythms in alignment to the environmental light/dark cycle. The neurons that comprise the SCN are anatomically and functionally heterogeneous, but despite their physiological importance, little is known about the pathways that guide their specification and differentiation. Here, we report that the stem/progenitor cell transcription factor, Sex determining region Y-box 2 (Sox2), is required in the embryonic SCN to control the expression of SCN-enriched neuropeptides and transcription factors. Ablation of Sox2 in the developing SCN leads to downregulation of circadian neuropeptides as early as embryonic day (E) 15.5, followed by a decrease in the expression of two transcription factors involved in SCN development, Lhx1 and Six6, in neonates. Thymidine analog-retention assays revealed that Sox2 deficiency contributed to reduced survival of SCN neurons during the postnatal period of cell clearance, but did not affect progenitor cell proliferation or SCN specification. Our results identify SOX2 as an essential transcription factor for the proper differentiation and survival of neurons within the developing SCN.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A556-A556
Author(s):  
Brooke M Devries ◽  
Joseph Breuer ◽  
Alexandra Yaw ◽  
Brooke Jackson ◽  
Duong Nguyen ◽  
...  

Abstract Light provides the primary timing signal that enables fine-tuned behavioral and hormonal entrainment of circadian rhythms to the environment. Light is transmitted from the eye to the brain through the retinohypothalamic tract, where one target is the hypothalamic suprachiasmatic nucleus (SCN), which generates self-sustained circadian rhythms. The vasoactive intestinal polypeptide (VIP) expressing neurons of the SCN relay light information to peripheral cells and tissues through control of hormonal and nervous signals, allowing synchronization of molecular clocks located in individual cells throughout the body. Non-natural light cycles, ie shiftwork, and weakened SCN function through genetic manipulation, disrupt the body’s circadian rhythms, causing deregulated hormone release, metabolic disorders, and negative effects on reproductive systems such as irregular menstrual cycles and decreased sperm count. To further our understanding of how the SCN translates light information into neuroendocrine control of fertility, we conditionally deleted the SCN enriched transcription factor Ventral anterior homeobox 1 (Vax1) in post-developmental VIP neurons, generating Vax1-flox/flox:Vip-Cre+ (cKO) mice. To determine if the SCN timekeeping function was impacted in cKO mice, we single housed males and females with running wheels to examine activity during both 12-hour light/dark cycles and in constant darkness. Wheel-running behavior in constant darkness revealed a shortening of the endogenous free-running period (Tau) of the SCN. Aside from Tau, wheel running behaviors were comparable to controls. Weakened SCN output can negatively impact fertility. While on 12-hour light/dark cycles, we found a modest, but significant change in follicle stimulating hormone and estrogen in cKO females and a reduced sensitivity of GnRH neurons to kisspeptin in males. The changes in hormone release were associated with a slightly lengthened estrous cycle in cKO females and reduced sperm quality in cKO males. To identify the molecular origin of the shortened SCN period, we used immunohistochemistry and RNAscope to examine expression of Vip. We found that diestrus cKO females had a significant reduction in Vip expression at ZT16 and preliminary data suggest a reduction in the circadian clock gene Bmal1. Together, these studies identify a novel role of VAX1 in VIP neurons where VAX1 is required for VIP expression and circadian timekeeping. Loss of VAX1 in VIP neurons weakens SCN output, deregulating reproductive hormone release and modestly reducing reproductive function in both males and females.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxiao Lu ◽  
Minjie Zhou ◽  
Nannan Liu ◽  
Chengshun Zhang ◽  
Zhengyu Zhao ◽  
...  

Phosphorylation is one of the most important posttranslational modifications and regulates the physiological process. While recent studies highlight a major role of phosphorylation in the regulation of sleep–wake cycles to a lesser extent, the phosphoproteome in the suprachiasmatic nucleus (SCN) is not well-understood. Herein, we reported that the EA treatment elicits partial reparation of circadian rhythmicity when mice were exposure to constant darkness for long time. We investigated the effects of EA on circadian rhythms in constant darkness between EA stimulation and free-running control. Next, mass spectrometry–based phosphoproteome was utilized to explore the molecular characteristics of EA-induced phosphorylation modification in the SCN. A total of 6,192 distinct phosphosites on 2,488 proteins were quantified. Functional annotation analysis and protein–protein interaction networks demonstrated the most significant enriched phosphor-proteins and phosphosites involved in postsynapse and glutamatergic synapse. The current data indicated that most of the altered molecules are structural proteins. The target proteins, NMDAR and CAMK2, were selected for verification, consistent with the results of LC–MS/MS. These findings revealed a complete profile of phosphorylation modification in response to EA.


Sign in / Sign up

Export Citation Format

Share Document