scholarly journals SOX2 Regulates Neuronal Differentiation of the Suprachiasmatic Nucleus

2021 ◽  
Vol 23 (1) ◽  
pp. 229
Author(s):  
Arthur H. Cheng ◽  
Samuel W. Fung ◽  
Sara Hegazi ◽  
Osama Hasan Mustafa Hasan Abdalla ◽  
Hai-Ying Mary Cheng

In mammals, the hypothalamic suprachiasmatic nucleus (SCN) functions as the central circadian pacemaker, orchestrating behavioral and physiological rhythms in alignment to the environmental light/dark cycle. The neurons that comprise the SCN are anatomically and functionally heterogeneous, but despite their physiological importance, little is known about the pathways that guide their specification and differentiation. Here, we report that the stem/progenitor cell transcription factor, Sex determining region Y-box 2 (Sox2), is required in the embryonic SCN to control the expression of SCN-enriched neuropeptides and transcription factors. Ablation of Sox2 in the developing SCN leads to downregulation of circadian neuropeptides as early as embryonic day (E) 15.5, followed by a decrease in the expression of two transcription factors involved in SCN development, Lhx1 and Six6, in neonates. Thymidine analog-retention assays revealed that Sox2 deficiency contributed to reduced survival of SCN neurons during the postnatal period of cell clearance, but did not affect progenitor cell proliferation or SCN specification. Our results identify SOX2 as an essential transcription factor for the proper differentiation and survival of neurons within the developing SCN.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 54-54
Author(s):  
Kunhua Qin ◽  
Peng Huang ◽  
Anran Huang ◽  
Ruopeng Feng ◽  
Thiyagaraj Mayuranathan ◽  
...  

Sickle cell disease and some forms of b-thalassemia are disorders, which can be improved by therapies that elevate HbF, the fetal form of hemoglobin. It is currently thought that in adult type erythroid cells, silencing of the fetal type b-globin-like genes HBG1 and HBG2 is accomplished predominantly by two major transcription factors: BCL11A and ZBTB7A. However, it is unknown whether there are additional transcription factors that contribute to the repression of the HBG1/2 genes. Here, using a DNA-binding domain focused CRISPR-Cas9 screening approach, we identified NFIA as a novel regulator of HbF expression. NFIA belongs to the NFI transcription factor family, which is composed of NFIA, NFIB, NFIC and NFIX. NFIA and NFIX are the predominantly expressed forms in human erythroid cells, and their expression is higher in adult erythroblast cells when compared to fetal erythroid cells. CRISPR-Cas9 mediated disruption of NFIA in an immortalized human umbilical cord blood-derived erythroid progenitor cell line 2 (HUDEP2) or CD34+ hematopoietic stem and progenitor cell-derived primary erythroblast cells led to a modest reactivation of HBG1/2 mRNA expression, whereas disruption of NFIX had little effect. However, combined NFIA and NFIX disruption produced a substantial increase in HBG1/2 expression, suggesting that these factors function in a partially redundant manner. ChIP-seq and RNA-seq studies showed that NFIA and NFIX have comparable chromatin binding and activity profiles in human erythroid cells. ChIP-seq failed to detect NFI protein occupancy at or near the HBG1/2 genes. However, given the known difficulty in detecting repressor molecules by ChIP at the silent HBG1/2 genes [Martyn et al., Nature Genetics 2018; Liu et al., Cell 2018], we tested a direct involvement of NFI proteins by disrupting putative NFI binding sites near the HBG1/2 genes. Perturbation of one such NFI motif residing upstream of the transcription start site in the HBG1/2 promoters both in HUDEP2 and primary human erythroid cells markedly increased HBG1/2 mRNA levels, comparable to those achieved by combined disruption of NFIA and NFIX. Mutation of another putative NFI motif within intron1 in the HBG1/2 gene also significantly raised HbF levels. While these results implicate NFI proteins in the direct silencing of the HBG1/2 genes, the identity of the bound factors at the NFI motifs remains to be established. Studies are currently ongoing that use alternative approaches such as Cleavage Under Target & Release Using Nuclease (CUT & RUN) to map the chromatin occupancy of NFI factors at the HBG1/2 genomic region. We will also discuss results from ongoing studies of NFI factors in NBSGW mice models. In sum, we uncovered NFI transcription factors as a novel HbF regulator suggesting that the silencing of HbF involves a transcription factor network that is more complex than previously appreciated. Disclosures Weiss: Rubius Inc.: Consultancy, Current equity holder in private company; Cellarity Inc.: Consultancy, Current equity holder in private company; Novartis: Consultancy, Current equity holder in private company; Esperion Therapeutics: Consultancy, Current equity holder in private company; Beam Therapeuticcs: Consultancy, Current equity holder in private company. Blobel:Pfizer: Research Funding; Fulcrum Therapeutics: Consultancy.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Victoria Honnell ◽  
Jackie L. Norrie ◽  
Anand G. Patel ◽  
Cody Ramirez ◽  
Jiakun Zhang ◽  
...  

AbstractSuper-enhancers are expansive regions of genomic DNA comprised of multiple putative enhancers that contribute to the dynamic gene expression patterns during development. This is particularly important in neurogenesis because many essential transcription factors have complex developmental stage– and cell–type specific expression patterns across the central nervous system. In the developing retina, Vsx2 is expressed in retinal progenitor cells and is maintained in differentiated bipolar neurons and Müller glia. A single super-enhancer controls this complex and dynamic pattern of expression. Here we show that deletion of one region disrupts retinal progenitor cell proliferation but does not affect cell fate specification. The deletion of another region has no effect on retinal progenitor cell proliferation but instead leads to a complete loss of bipolar neurons. This prototypical super-enhancer may serve as a model for dissecting the complex gene expression patterns for neurogenic transcription factors during development. Moreover, it provides a unique opportunity to alter expression of individual transcription factors in particular cell types at specific stages of development. This provides a deeper understanding of function that cannot be achieved with traditional knockout mouse approaches.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2021 ◽  
Vol 22 (15) ◽  
pp. 8193
Author(s):  
Daniel Pérez-Cremades ◽  
Ana B. Paes ◽  
Xavier Vidal-Gómez ◽  
Ana Mompeón ◽  
Carlos Hermenegildo ◽  
...  

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document