scholarly journals Genetic Analysis of Grain Filling Rate Using Conditional QTL Mapping in Maize

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56344 ◽  
Author(s):  
Zhanhui Zhang ◽  
Zonghua Liu ◽  
Zitian Cui ◽  
Yanmin Hu ◽  
Bin Wang ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Binbin Du ◽  
Qifei Wang ◽  
Genlou Sun ◽  
Xifeng Ren ◽  
Yun Cheng ◽  
...  

AbstractGrain filling is an important growth process in formation of yield and quality for barley final yield determination. To explore the grain development behavior during grain filling period in barley, a high-density genetic map with 1962 markers deriving from a doubled haploid (DH) population of 122 lines was used to identify dynamic quantitative trait locus (QTL) for grain filling rate (GFR) and five grain size traits: grain area (GA), grain perimeter (GP), grain length (GL), grain width (GW) and grain diameter (GD). Unconditional QTL mapping is to detect the cumulative effect of genetic factors on a phenotype from development to a certain stage. Conditional QTL mapping is to detect a net effect of genetic factors on the phenotype at adjacent time intervals. Using unconditional, conditional and covariate QTL mapping methods, we successfully detected 34 major consensus QTLs. Moreover, certain candidate genes related to grain size, plant height, yield, and starch synthesis were identified in six QTL clusters, and individual gene was specifically expressed in different grain filling stages. These findings provide useful information for understanding the genetic basis of the grain filling dynamic process and will be useful for molecular marker-assisted selection in barley breeding.


2008 ◽  
Vol 118 (2) ◽  
pp. 313-325 ◽  
Author(s):  
R. X. Wang ◽  
L. Hai ◽  
X. Y. Zhang ◽  
G. X. You ◽  
C. S. Yan ◽  
...  

2013 ◽  
Vol 38 (9) ◽  
pp. 1698-1709
Author(s):  
Tian-Jun XU ◽  
Zhi-Qiang DONG ◽  
Jiao GAO ◽  
Chuan-Xiao CHEN ◽  
Liu JIAO ◽  
...  

2015 ◽  
Vol 2 (2) ◽  
pp. 117-132
Author(s):  
Maamoun Ahmed Abdel-Moneam ◽  
Sally E El-Wakeel ◽  
M. S. Sultan ◽  
A. A. Eid

This investigation was carried out at Sakha Agricultural Research Station, ARC, Egypt during the two growing seasons (2010/2011 and 2011/2012). Seven lines and three testers were used to develop barley hybrids for earliness and vegetative traits under normal and water stress conditions. Data revealed that most of the variances due to genotypes, parents, crosses, parents x crosses, lines, testers and line x testers were highly significant for most studied traits under both conditions and their combined data. The water stress treatment decreased the mean of days to heading for parents and their hybrids. The parental Line-1, Tester-1 under all conditions and top cross no. 7 under normal and combined and cross no. 1 under stress were the earliest parents and crosses for days to heading. The stressed genotypes for water, matured earlier than genotypes grown under normal condition. The ratios of GCA/SCA were lesser than unity for all studied traits under all conditions, which mean that non-additive gene effects played an important role in the inheritance of these traits. In such cases, a bulk method would be fruitful to eliminate the effect of dominance in the advanced generation. Desirable significant GCA effects were showed by Line-1 under water stress and Tester-1 under all conditions for days to heading; Tester-1 under normal and combined for days to maturity; Line-2 under stress and Line-7 under normal condition for grain filling period; Line-4, Line-6 under both conditions and combined, Line-3 under normal, Line-7 under water stress, Tester-3 under both conditions and combined data for grain filling rate; Line-4 under both conditions and their combined data, Line-7 under water stress and combined data, Tester-2 under stress and combined data for flag leaf area; and Line-3 under normal, Line-2 and Line-7 under water stress for total chlorophyll content. Moderate phenotypic and genotypic coefficients of variability were obtained for grain filling rate and total chlorophyll content, and high for flag leaf area. Small differences between genotypic and phenotypic coefficients of variability were found for all studied traits under all conditions, indicating the presence of sufficient genetic variability for these traits, which may facilitate selection. Broad sense heritability percentages ranged from moderate to high with percentages ranged from 10.82% for days to maturity at combined data to 97.30% for grain filling rate under normal condition. These results indicate that genotypic variances played the major part of phenotypic variances. Narrow sense heritability percentages varied from low to moderate with percentages ranged from 0.92 % for grain filling period at combined data to 18.92% for grain filling rate under normal condition. The expected genetic advance (Δg) ranged from 0.02 for grain filling period at combined data to 0.36 for total chlorophyll conten under normal condition. While, the estimates of predicted genetic advance (Δg %) ranged from 0.04% for grain filling period at combined data to 7.41% for grain filling rate under stress condition. Generally, traits that showed high values of narrow sense heritability and expected genetic advance from selection should be used in breeding program where selection in the early segregating generations will be useful because additive gene action is more important than non-additive genetic components.


Genetika ◽  
2012 ◽  
Vol 44 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Ahmad Golparvar

Mode of gene action, heritability and determination of the effective breeding strategy for improvement of physiological and traits specifically in drought stress conditions is very important. Therefore, this study was conducted by using two drought susceptible and tolerant wheat cultivars. Cultivars Sakha8 (tolerant) and Pishtaz (susceptible) as parents along with F1, F2, BC1 and BC2 generations were sown in a randomized complete block design with three replications in drought stress conditions. Results of analysis of variance indicated significant difference between generations as well as degree of dominance revealed over-dominance for the both traits. Fitting simple additive-dominance model designated that this model was not able to account for changes of traits relative water content and mean of grain filling rate. It was revealed that m-d-h-i-j model for relative water content and m-d-h-i model for mean of grain filling rate are the best models. Estimation of heritability and mode of gene action indicated that selection for improvement of traits studied in stress condition and specifically in early generations have medium genetic gain. In conclusion, grain filling rate is better than relative water content as indirect selection criteria to improve plant grain yield in drought stress condition.


Sign in / Sign up

Export Citation Format

Share Document