scholarly journals Role of Na,K-ATPase α1 and α2 Isoforms in the Support of Astrocyte Glutamate Uptake

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e98469 ◽  
Author(s):  
Nina B. Illarionava ◽  
Hjalmar Brismar ◽  
Anita Aperia ◽  
Eli Gunnarson
Keyword(s):  
2015 ◽  
Vol 370 (1672) ◽  
pp. 20140193 ◽  
Author(s):  
Katerina D. Oikonomou ◽  
Mandakini B. Singh ◽  
Matthew T. Rich ◽  
Shaina M. Short ◽  
Srdjan D. Antic

Thin basal dendrites can strongly influence neuronal output via generation of dendritic spikes. It was recently postulated that glial processes actively support dendritic spikes by either ceasing glutamate uptake or by actively releasing glutamate and adenosine triphosphate (ATP). We used calcium imaging to study the role of NR2C/D-containing N -methyl- d -aspartate (NMDA) receptors and adenosine A1 receptors in the generation of dendritic NMDA spikes and plateau potentials in basal dendrites of layer 5 pyramidal neurons in the mouse prefrontal cortex. We found that NR2C/D glutamate receptor subunits contribute to the amplitude of synaptically evoked NMDA spikes. Dendritic calcium signals associated with glutamate-evoked dendritic plateau potentials were significantly shortened upon application of the NR2C/D receptor antagonist PPDA, suggesting that NR2C/D receptors prolong the duration of calcium influx during dendritic spiking. In contrast to NR2C/D receptors, adenosine A1 receptors act to abbreviate dendritic and somatic signals via the activation of dendritic K + current. This current is characterized as a slow-activating outward-rectifying voltage- and adenosine-gated current, insensitive to 4-aminopyridine but sensitive to TEA. Our data support the hypothesis that the release of glutamate and ATP from neurons or glia contribute to initiation, maintenance and termination of local dendritic glutamate-mediated regenerative potentials.


2011 ◽  
Vol 5 (S1) ◽  
pp. 19-20
Author(s):  
S. Reichl ◽  
A. Boecker ◽  
V. Keller ◽  
P.K. Zahn ◽  
E.M. Pogatzki-Zahn

2020 ◽  
Author(s):  
Pengbo Shi ◽  
Zhaosu Li ◽  
Xing Xu ◽  
Jiaxun Nie ◽  
Dekang Liu ◽  
...  

ABSTRACTMethamphetamine (METH) is frequently abused drug and produces cognitive deficits. METH could induce hyper-glutamatergic state in the brain, which could partially explain METH-related cognitive deficits, but the synaptic etiology remains incompletely understood. To address this issue, we explored the role of dCA1 tripartite synapses and the potential therapeutic effects of electro-acupuncture (EA) in the development of METH withdrawal-induced spatial memory deficits in mice. We found that METH withdrawal weakened astrocytic capacity of glutamate (Glu) uptake, but failed to change Glu release from dCA3, which lead to hyper-glutamatergic excitotoxicity at dCA1 tripartite synapses. By restoring the astrocytic capacity of Glu uptake, EA treatments suppressed the hyper-glutamatergic state and normalized the excitability of postsynaptic neuron in dCA1, finally alleviated spatial memory deficits in METH withdrawal mice. These findings indicate that astrocyte at tripartite synapses might be a key target for developing therapeutic interventions against METH-associated cognitive disorders, and EA represent a promising non-invasive therapeutic strategy for the management of drugs-caused neurotoxicity.


2002 ◽  
Vol 66 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Michael G. Judd ◽  
Tavarekere N. Nagaraja ◽  
Neville Brookes

2010 ◽  
Vol 104 (2) ◽  
pp. 713-725 ◽  
Author(s):  
Hui Nie ◽  
Haijun Zhang ◽  
Han-Rong Weng

Bidirectional interactions between neurons and glial cells are crucial to the genesis of pathological pain. The mechanisms regulating these interactions and the role of this process in relaying synaptic input in the spinal dorsal horn remain to be established. We studied the role of glutamate transporters in the regulation of such interactions. On pharmacological blockade of glutamate transporters, slow inward currents (SICs) appeared spontaneously and/or were evoked by peripheral synaptic input in the spinal superficial dorsal horn neurons, including the spinothalamic tract neurons. We showed that the SICs were induced by the release of glutamate from glial cells. On inhibition of glutamate uptake, the stimulation-induced, synaptically released glutamate activated glial cells and caused glial cells to release glutamate. Glial-derived glutamate acted on extrasynaptic N-methyl-d-aspartate (NMDA) receptors mainly composed of NR2B receptors and generated SICs, which led to depolarization and action potential generation in superficial spinal dorsal horn neurons. Thus glutamate transporters regulate glutamatergic neuron–glia interactions at spinal sensory synapses. When glutamate uptake is impaired, glial cells function like excitatory interneurons—they are activated by peripheral synaptic input and release glutamate to activate postsynaptic neurons in spinal pain pathways.


2001 ◽  
Vol 280 (5) ◽  
pp. C1151-C1159 ◽  
Author(s):  
Tomas Welbourne ◽  
Itzhak Nissim

We focused on the role of plasma membrane glutamate uptake in modulating the intracellular glutaminase (GA) and glutamate dehydrogenase (GDH) flux and in determining the fate of the intracellular glutamate in the proximal tubule-like LLC-PK1-F+ cell line. We used high-affinity glutamate transport inhibitors d-aspartate (d-Asp) and dl-threo-β-hydroxyaspartate (THA) to block extracellular uptake and then used [15N]glutamate or [2-15N]glutamine to follow the metabolic fate and distribution of glutamine and glutamate. In monolayers incubated with [2-15N]glutamine (99 atom %excess), glutamine and glutamate equilibrated throughout the intra- and extracellular compartments. In the presence of 5 mMd-Asp and 0.5 mM THA, glutamine distribution remained unchanged, but the intracellular glutamate enrichment decreased by 33% ( P < 0.05) as the extracellular enrichment increased by 39% ( P < 0.005). With glutamate uptake blocked, intracellular glutamate concentration decreased by 37% ( P < 0.0001), in contrast to intracellular glutamine concentration, which remained unchanged. Both glutamine disappearance from the media and the estimated intracellular GA flux increased with the fall in the intracellular glutamate concentration. The labeled glutamate and NH[Formula: see text] formed from [2-15N]glutamine and recovered in the media increased 12- and 3-fold, respectively, consistent with accelerated GA and GDH flux. However, labeled alanine formation was reduced by 37%, indicating inhibition of transamination. Although both d-Asp and THA alone accelerated the GA and GDH flux, only THA inhibited transamination. These results are consistent with glutamate transport both regulating and being regulated by glutamine and glutamate metabolism in epithelial cells.


1999 ◽  
Vol 265 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Rui Silva ◽  
Lucinda R. Mata ◽  
Sérgio Gulbenkian ◽  
Maria A. Brito ◽  
Claudio Tiribelli ◽  
...  

1993 ◽  
Vol 607 (1-2) ◽  
pp. 249-254 ◽  
Author(s):  
Jan Albrecht ◽  
Margaret Talbot ◽  
Harold K. Kimelberg ◽  
Michael Aschner

Sign in / Sign up

Export Citation Format

Share Document