scholarly journals The Impact of Maternal Cigarette Smoke Exposure in a Rodent Model on Renal Development in the Offspring

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e103443 ◽  
Author(s):  
Ibrahim Al-Odat ◽  
Hui Chen ◽  
Yik Lung Chan ◽  
Sawiris Amgad ◽  
Muh Geot Wong ◽  
...  
2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Pamela Shen ◽  
Fiona J. Whelan ◽  
L. Patrick Schenck ◽  
Joshua J. C. McGrath ◽  
Gilles Vanderstocken ◽  
...  

ABSTRACT Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium, Gemella, and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization.


2021 ◽  
pp. 002203452110094
Author(s):  
Y. Qin ◽  
Y. Liu ◽  
Y. Jiang ◽  
S. Mei ◽  
Y. Liu ◽  
...  

It is widely known that smoking is a risk factor for bone loss and plays a key role in osteopenia. Despite this well-known association, the mechanisms by which smoking affects bone have not been definitively established. Since smoking increases bone loss and potentially affects bone resorption in response to mechanical force, we investigated the impact of cigarette smoke on osteoclast numbers and underlying mechanisms in a mouse model of orthodontic tooth movement (OTM). The experimental group was exposed to once-daily cigarette smoke while the control group was not, and tooth movement distance and osteoclast numbers were assessed. In addition, the effect of cigarette smoke extract (CSE) on osteoclast precursor proliferation and osteoclast apoptosis was assessed in vitro. We found that cigarette smoke exposure enhanced bone remodeling stimulated by mechanical force and increased osteoclast numbers in vivo. Also, CSE increased the number of osteoclasts by inhibiting osteoclast apoptosis via the mitochondrial reactive oxygen species/cytochrome C/caspase 3 pathway in vitro. Moreover, exposure of mice to cigarette smoke affected bone marrow cells, leading to increased formation of osteoclasts in vitro. This study identifies a previously unknown mechanism of how smoking has a detrimental impact on bone.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Mary Figueroa ◽  
Maninder Khosla ◽  
Yue Lu ◽  
Marcos Estecio ◽  
Seyed Javad Moghaddam ◽  
...  

Current and former smoker AML patients have worse survival outcomes compared to never smokers. This worsened prognosis of smokers with AML can also be seen in patients who carry activating mutations of the Fms-like tyrosine kinase 3 (FLT3) and are treated with regimens that include newly approved kinase inhibitors. While the impact of genetic mutations on survival in AML have been studied, and some have been therapeutically targeted, the role of cigarette smoking or cigarette smoke exposure (which is potentially modifiable) on leukemia progression or treatment response is understudied. In order to elucidate molecular effects of cigarette smoke exposure (CSE) that contribute to the poor prognosis of AML patients, we developed a cigarette smoke exposure model for mice to mimic the current and former smoking habits of AML patients. NOD-SCID mice were exposed to CSE in a smoking robot for 2 hours, 5 days/week, for 2 weeks or to air alone as a control. Mice were then injected with luciferase-tagged human AML cell lines, and leukemic burden was monitored through non-invasive bioluminescent imaging. Control "non-smoking" mice were only subject to AML cell injection. Enhanced early leukemic-burden was observed two distinct FLT3-ITD AML models, MOLM13 and MOLM14, within one week post AML introduction (p-value <0.0001 and <0.001 respectively). Although the latter model showed slightly longer latency of disease with increased leukemic burden apparent 24 days post leukemic introduction (p-value <0.05). In order to address if the early increase in leukemic burden may have arisen from extrinsic factors in the tumor microenvironment, we utilized non-leukemia bearing immunocompetent mice exposed to CSE using the 2 week exposure scheme and saw enhanced myeloid progenitor growth, indicating evidence of microenvironment priming of myeloid cells by CSE. One month of CSE increased the MPP1 and MPP2 populations in the bone marrow of NOD-SCID mice. C57BL/6J mice had increased myeloid and hematopoietic stem cell populations after a month of CSE (p-value <0.05). We also modeled the effect of smoking cessation upon leukemia engraftment by halting smoke exposure compared to mice that continued smoking. Cessation significantly slowed leukemic growth in MOLM13 bearing mice (N=10, p-value<0.01). Cigarette smoke exposure globally alters DNA methylation in blood cells and these changes can persist for decades. Independent of mutations, DNA methylation patterns in AML patients have prognostic significance. To understand how CSE accelerated leukemic growth in vivo, DNA methylation was evaluated using reduced representative bisulfite sequencing. More than two hundred significant alterations in DNA methylation across the promoter region of genes were found AML cells from spleen samples of CSE MOLM13-bearing mice as compared to non-smoking mice. Among the genes with the most significantly altered DNA methylation were GATA-2, an important protein for hematopoietic differentiation, and aryl-hydrocarbon receptor repressor (AHRR), a gene whose hypomethylation is a hallmark of cigarette smoke exposure. To identify the impact of cigarette smoke exposure on the leukemia cells in the absence of the tumor microenvironment we treated AML cells directly using a cigarette smoke condensate (CSC) that contains the chemicals in cigarette smoke used in the previously described CSE model. MOLM13 cells either treated with DMSO or 10ug/ml CSC every passage for two weeks were injected into NOD-SCID mice. This model resulted in enhanced leukemic burden 3, 10, and 17 days after leukemic introduction (p-value <0.0001, <0.0001, and <0.001) indicating strong pro-leukemic effects of CSC. Evaluation of in vitro CSC treated AML cells was conducted to identify causes for the enhanced leukemic burden. While CSC treatment yielded no changes in proliferation or survival of the cells over the course of two months, within one week there was increased expression of DNMT1 in several cells lines. Increased basal and maximal oxygen consumption, and modulation of the antioxidant gene, HO-1, was also observed along with modulation of AHRR and GATA-2, reinforcing roles for methylation data gained from in vivo CSE experiments. Discovering the mechanisms promoting AML progression from cigarette smoke exposure will lead to improved, tailored treatment for AML patients with smoking histories and our further studies of these gene changes will aid in that endeavor. Disclosures Jabbour: Takeda: Other: Advisory role, Research Funding; AbbVie: Other: Advisory role, Research Funding; Amgen: Other: Advisory role, Research Funding; Pfizer: Other: Advisory role, Research Funding; Genentech: Other: Advisory role, Research Funding; BMS: Other: Advisory role, Research Funding; Adaptive Biotechnologies: Other: Advisory role, Research Funding. Konopleva:Genentech: Consultancy, Research Funding; Ascentage: Research Funding; Forty-Seven: Consultancy, Research Funding; Calithera: Research Funding; F. Hoffmann La-Roche: Consultancy, Research Funding; Reata Pharmaceutical Inc.;: Patents & Royalties: patents and royalties with patent US 7,795,305 B2 on CDDO-compounds and combination therapies, licensed to Reata Pharmaceutical; Ablynx: Research Funding; Agios: Research Funding; Amgen: Consultancy; AstraZeneca: Research Funding; Eli Lilly: Research Funding; Kisoji: Consultancy; Cellectis: Research Funding; Rafael Pharmaceutical: Research Funding; AbbVie: Consultancy, Research Funding; Stemline Therapeutics: Consultancy, Research Funding; Sanofi: Research Funding. DiNardo:Agios: Consultancy, Honoraria, Research Funding; Syros: Honoraria; AbbVie: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Takeda: Honoraria; Calithera: Research Funding; Daiichi Sankyo: Consultancy, Honoraria, Research Funding; Notable Labs: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; MedImmune: Honoraria; ImmuneOnc: Honoraria; Jazz: Honoraria.


Author(s):  
Evelien Eenjes ◽  
Sander van Riet ◽  
Andre A. Kroon ◽  
Annelies M. Slats ◽  
P. Padmini. S.J. Khedoe ◽  
...  

Air-liquid interface (ALI) cultures are frequently used in lung research but require substantial cell numbers that cannot readily be obtained from patients. We explored whether organoid expansion (3D) can be used to establish ALI cultures from clinical samples with low epithelial cell numbers. Airway epithelial cells were obtained from tracheal aspirates (TA) from preterm newborns, and from bronchoalveolar lavage (BAL) or bronchial tissue (BT) from adults. TA and BAL cells were 3D-expanded, whereas cells from BT were expanded in 3D and 2D. Following expansion, cells were cultured at ALI to induce differentiation. The impact of cell origin and 2D or 3D expansion was assessed with respect to (i) cellular composition; (ii) response to cigarette smoke exposure; (iii) effect of Notch inhibition or IL-13 stimulation on cellular differentiation. We established well-differentiated ALI cultures from all samples. Cellular compositions (basal, ciliated and goblet cells) were comparable. All 3D-expanded cultures showed a similar stress response following cigarette smoke exposure but differed from the 2D-expanded cultures. Higher peak levels of antioxidant genes HMOX1 and NQO1 and a more rapid return to baseline, and a lower unfolded protein response was observed after cigarette smoke exposure in 3D-derived cultures compared to 2D-derived cultures. Additionally, TA- and BAL-derived cultures were less sensitive to modulation by DAPT or IL-13 than BT-derived cultures. Organoid-based expansion of clinical samples with low cell numbers, such as TA from preterm newborns is a valid method and tool to establish ALI cultures.


2017 ◽  
Vol 313 (2) ◽  
pp. L416-L423 ◽  
Author(s):  
Surpon Sukjamnong ◽  
Yik Lung Chan ◽  
Razia Zakarya ◽  
Sonia Saad ◽  
Pawan Sharma ◽  
...  

Maternal smoking during pregnancy contributes to long-term health problems in offspring, especially respiratory disorders that can manifest in either childhood or adulthood. Receptors for advanced glycation end products (RAGE) are multiligand receptors abundantly localized in the lung, capable of responding to by-products of reactive oxygen species and proinflammatory responses. RAGE signaling is a key regulator of inflammation in cigarette smoking-related pulmonary diseases. However, the impact of maternal cigarette smoke exposure on lung RAGE signaling in the offspring is unclear. This study aims to investigate the effect of maternal cigarette smoke exposure (SE), as well as mitochondria-targeted antioxidant [mitoquinone mesylate (MitoQ)] treatment, during pregnancy on the RAGE-mediated signaling pathway in the lung of male offspring. Female Balb/c mice (8 wk) were divided into a sham group (exposed to air), an SE group (exposed to cigarette smoke), and an SE + MQ group (exposed to cigarette smoke with MitoQ supplement from mating). The lungs from male offspring were collected at 13 wk. RAGE and its downstream signaling, including nuclear factor-κB and mitogen-activated protein kinase family consisting of extracellular signal-regulated kinase 1, ERK2, c-JUN NH2-terminal kinase (JNK), and phosphorylated JNK, in the lung were significantly increased in the SE offspring. Mitochondrial antioxidant manganese superoxide dismutase was reduced, whereas IL-1β and oxidative stress response nuclear factor (erythroid-derived 2)-like 2 were significantly increased in the SE offspring. Maternal MitoQ treatment normalized RAGE, IL-1β, and Nrf-2 levels in the SE + MQ offspring. Maternal SE increased RAGE and its signaling elements associated with increased oxidative stress and inflammatory cytokines in offspring lungs, whereas maternal MitoQ treatment can partially normalize these changes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Steven P. Cass ◽  
Olivia Mekhael ◽  
Danya Thayaparan ◽  
Joshua J. C. McGrath ◽  
Spencer D. Revill ◽  
...  

RationaleThe accumulation of macrophages in the airways and the pulmonary interstitium is a hallmark of cigarette smoke-associated inflammation. Notably, pulmonary macrophages are not a homogenous population but consist of several subpopulations. To date, the manner in which cigarette smoke exposure affects the relative composition and functional capacity of macrophage subpopulations has not been elucidated.MethodsUsing a whole-body cigarette smoke exposure system, we investigated the impact of cigarette smoke on macrophage subpopulations in C57BL/6 mice using flow cytometry-based approaches. Moreover, we used bromodeoxyuridine labelling plus Il1a-/- and Il1r1-/- mice to assess the relative contribution of local proliferation and monocyte recruitment to macrophage accumulation. To assess the functional consequences of altered macrophage subpopulations, we used a model of concurrent bleomycin-induced lung injury and cigarette smoke exposure to examine tissue remodelling processes.Main ResultsCigarette smoke exposure altered the composition of pulmonary macrophages increasing CD11b+ subpopulations including monocyte-derived alveolar macrophages (Mo-AM) as well as interstitial macrophages (IM)1, -2 and -3. The increase in CD11b+ subpopulations was observed at multiple cigarette smoke exposure timepoints. Bromodeoxyuridine labelling and studies in Il1a-/- mice demonstrated that increased Mo-AM and IM3 turnover in the lungs of cigarette smoke-exposed mice was IL-1α dependent. Compositional changes in macrophage subpopulations were associated with impaired induction of fibrogenesis including decreased α-smooth muscle actin positive cells following intratracheal bleomycin treatment. Mechanistically, in vivo and ex vivo assays demonstrated predominant macrophage M1 polarisation and reduced matrix metallopeptidase 9 activity in cigarette smoke-exposed mice.ConclusionCigarette smoke exposure modified the composition of pulmonary macrophage by expanding CD11b+ subpopulations. These compositional changes were associated with attenuated fibrogenesis, as well as predominant M1 polarisation and decreased fibrotic activity. Overall, these data suggest that cigarette smoke exposure altered the composition of pulmonary macrophage subpopulations contributing to impaired tissue remodelling.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3084
Author(s):  
Gaëlle Rémy ◽  
Emilie Dubois-Deruy ◽  
Jeanne Alard ◽  
Gwenola Kervoaze ◽  
Maggy Chwastyniak ◽  
...  

The authors have requested that the following changes be made to their paper [...]


2020 ◽  
Vol 319 (2) ◽  
pp. L391-L402 ◽  
Author(s):  
Éric Jubinville ◽  
Nadia Milad ◽  
Michaël Maranda-Robitaille ◽  
Marc-Alexandre Lafrance ◽  
Marie Pineault ◽  
...  

Genetic predispositions and environmental exposures are regarded as the main predictors of respiratory disease development. Although the impact of dietary essential nutrient deficiencies on cardiovascular disease, obesity, and type II diabetes has been widely studied, it remains poorly explored in chronic respiratory diseases. Dietary choline and methionine deficiencies are common in the population, and their impact on pulmonary homeostasis is currently unknown. Mice were fed choline- and/or methionine-deficient diets while being exposed to room-air or cigarette smoke for up to 4 wk. Lung functions were assessed using the FlexiVent. Pulmonary transcriptional activity was assessed using gene expression microarrays and quantitative PCR. Immune cells, cytokines, and phosphatidylcholine were quantified in the bronchoalveolar lavage. In this study, we found that short-term dietary choline and/or methionine deficiencies significantly affect lung function in mice in a reversible manner. It also reduced transcriptional levels of collagens and elastin as well as pulmonary surfactant phosphatidylcholine levels. We also found that dietary choline and/or methionine deficiencies markedly interfered with the pulmonary response to cigarette smoke exposure, modulating lung function and dampening inflammation. These findings clearly show that dietary choline and/or methionine deficiencies can have dramatic pathophysiological effects on the lungs and can also affect the pathobiology of cigarette smoke-induced pulmonary alterations. Expanding our knowledge in the field of “nutri-respiratory research” may reveal a crucial role for essential nutrients in pulmonary health and disease, which may prove to be as relevant as genetic predispositions and environmental exposures.


Sign in / Sign up

Export Citation Format

Share Document