scholarly journals Increased Monocyte-Derived CD11b+ Macrophage Subpopulations Following Cigarette Smoke Exposure Are Associated With Impaired Bleomycin-Induced Tissue Remodelling

2021 ◽  
Vol 12 ◽  
Author(s):  
Steven P. Cass ◽  
Olivia Mekhael ◽  
Danya Thayaparan ◽  
Joshua J. C. McGrath ◽  
Spencer D. Revill ◽  
...  

RationaleThe accumulation of macrophages in the airways and the pulmonary interstitium is a hallmark of cigarette smoke-associated inflammation. Notably, pulmonary macrophages are not a homogenous population but consist of several subpopulations. To date, the manner in which cigarette smoke exposure affects the relative composition and functional capacity of macrophage subpopulations has not been elucidated.MethodsUsing a whole-body cigarette smoke exposure system, we investigated the impact of cigarette smoke on macrophage subpopulations in C57BL/6 mice using flow cytometry-based approaches. Moreover, we used bromodeoxyuridine labelling plus Il1a-/- and Il1r1-/- mice to assess the relative contribution of local proliferation and monocyte recruitment to macrophage accumulation. To assess the functional consequences of altered macrophage subpopulations, we used a model of concurrent bleomycin-induced lung injury and cigarette smoke exposure to examine tissue remodelling processes.Main ResultsCigarette smoke exposure altered the composition of pulmonary macrophages increasing CD11b+ subpopulations including monocyte-derived alveolar macrophages (Mo-AM) as well as interstitial macrophages (IM)1, -2 and -3. The increase in CD11b+ subpopulations was observed at multiple cigarette smoke exposure timepoints. Bromodeoxyuridine labelling and studies in Il1a-/- mice demonstrated that increased Mo-AM and IM3 turnover in the lungs of cigarette smoke-exposed mice was IL-1α dependent. Compositional changes in macrophage subpopulations were associated with impaired induction of fibrogenesis including decreased α-smooth muscle actin positive cells following intratracheal bleomycin treatment. Mechanistically, in vivo and ex vivo assays demonstrated predominant macrophage M1 polarisation and reduced matrix metallopeptidase 9 activity in cigarette smoke-exposed mice.ConclusionCigarette smoke exposure modified the composition of pulmonary macrophage by expanding CD11b+ subpopulations. These compositional changes were associated with attenuated fibrogenesis, as well as predominant M1 polarisation and decreased fibrotic activity. Overall, these data suggest that cigarette smoke exposure altered the composition of pulmonary macrophage subpopulations contributing to impaired tissue remodelling.

2020 ◽  
Vol 107 (1) ◽  
pp. 55-66
Author(s):  
B. Mammel ◽  
T. Kvárik ◽  
Zs. Szabó ◽  
J. Gyarmati ◽  
T. Ertl ◽  
...  

AbstractNumerous studies indicate that smoking during pregnancy exerts harmful effects on fetal brain development. The aim of this study was to determine the influence of maternal smoking during pregnancy on the early physical and neurobehavioral development of newborn rats. Wistar rats were subjected to whole-body smoke exposure for 2 × 40 min daily from the day of mating until day of delivery. For this treatment, a manual closed-chamber smoking system and 4 research cigarettes per occasion were used. After delivery the offspring were tested daily for somatic growth, maturation of facial characteristics and neurobehavioral development until three weeks of age. Motor coordination tests were performed at 3 and 4 weeks of age. We found that prenatal cigarette smoke exposure did not alter weight gain or motor coordination. Critical physical reflexes indicative of neurobehavioral development (eyelid reflex, ear unfolding) appeared significantly later in pups prenatally exposed to smoke as compared to the control group. Prenatal smoke exposure also resulted in a delayed appearance of reflexes indicating neural maturity, including hind limb grasping and forelimb placing reflexes. In conclusion, clinically relevant prenatal exposure to cigarette smoke results in slightly altered neurobehavioral development in rat pups. These findings suggest that chronic exposure of pregnant mothers to cigarette smoke (including passive smoking) results in persisting alterations in the developing brain, which may have long-lasting consequences supporting the concept of developmental origins of health and disease (DoHAD).


2010 ◽  
Vol 298 (5) ◽  
pp. R1249-R1256 ◽  
Author(s):  
Robin E. Gandley ◽  
Arun Jeyabalan ◽  
Ketaki Desai ◽  
Stacy McGonigal ◽  
Jennifer Rohland ◽  
...  

Smoking is associated with multiple adverse pregnancy outcomes, including fetal growth restriction. The objective of this study was to determine whether cigarette smoke exposure during pregnancy in a mouse model affects the functional properties of maternal uterine, mesenteric, and renal arteries as a possible mechanism for growth restriction. C57Bl/CJ mice were exposed to whole body sidestream smoke for 4 h/day. Smoke particle exposure was increased from day 4 of gestation until late pregnancy ( day 16–19), with mean total suspended particle levels of 63 mg/m3, representative of moderate-to-heavy smoking in humans. Uterine, mesenteric, and renal arteries from late-pregnant and virgin mice were isolated and studied in a pressure-arteriograph system ( n = 23). Plasma cotinine was measured by ELISA. Fetal weights were significantly reduced in smoke-exposed compared with control fetuses (0.88 ± 0.1 vs. 1.0 ± 0.08 g, P < 0.02), while litter sizes were not different. Endothelium-mediated relaxation responses to methacholine were significantly impaired in both the uterine and mesenteric vasculature of pregnant mice exposed to cigarette smoke during gestation. This difference was not apparent in isolated renal arteries from pregnant mice exposed to cigarette smoke; however, relaxation was significantly reduced in renal arteries from smoke-exposed virgin mice. In conclusion, we found that passive cigarette smoke exposure is associated with impaired vascular relaxation of uterine and mesenteric arteries in pregnant mice. Functional maternal vascular perturbations during pregnancy, specifically impaired peripheral and uterine vasodilation, may contribute to a mechanism by which smoking results in fetal growth restriction.


Author(s):  
Daniel E. Morales-Mantilla ◽  
Xinyan Huang ◽  
Philip Erice ◽  
Paul Porter ◽  
Yun Zhang ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e103443 ◽  
Author(s):  
Ibrahim Al-Odat ◽  
Hui Chen ◽  
Yik Lung Chan ◽  
Sawiris Amgad ◽  
Muh Geot Wong ◽  
...  

2011 ◽  
Vol 300 (2) ◽  
pp. L255-L265 ◽  
Author(s):  
Saskia Braber ◽  
Pim J. Koelink ◽  
Paul A. J. Henricks ◽  
Patricia L. Jackson ◽  
Frans P. Nijkamp ◽  
...  

There is increasing evidence that the neutrophil chemoattractant proline-glycine-proline (PGP), derived from the breakdown of the extracellular matrix, plays an important role in neutrophil recruitment to the lung. PGP formation is a multistep process involving neutrophils, metalloproteinases (MMPs), and prolyl endopeptidase (PE). This cascade of events is now investigated in the development of lung emphysema. A/J mice were whole body exposed to cigarette smoke for 20 wk. After 20 wk or 8 wk after smoking cessation, animals were killed, and bronchoalveolar lavage fluid and lung tissue were collected to analyze the neutrophilic airway inflammation, the MMP-8 and MMP-9 levels, the PE activity, and the PGP levels. Lung tissue degradation was assessed by measuring the mean linear intercept. Additionally, we investigated the effect of the peptide l-arginine-threonine-arginine (RTR), which binds to PGP sequences, on the smoke-induced neutrophil influx in the lung after 5 days of smoke exposure. Neutrophilic airway inflammation was induced by cigarette smoke exposure. MMP-8 and MMP-9 levels, PE activity, and PGP levels were elevated in the lungs of cigarette smoke-exposed mice. PE was highly expressed in epithelial and inflammatory cells (macrophages and neutrophils) in lung tissue of cigarette smoke-exposed mice. After smoking cessation, the neutrophil influx, the MMP-8 and MMP-9 levels, the PE activity, and the PGP levels were decreased or reduced to normal levels. Moreover, RTR inhibited the smoke-induced neutrophil influx in the lung after 5 days' smoke exposure. In the present murine model of cigarette smoke-induced lung emphysema, it is demonstrated for the first time that all relevant components (neutrophils, MMP-8, MMP-9, PE) involved in PGP formation from collagen are upregulated in the airways. Together with MMPs, PE may play an important role in the formation of PGP and thus in the pathophysiology of lung emphysema.


Author(s):  
Meena Easwaran ◽  
Joshua D. Martinez ◽  
Daniel J. Ramirez ◽  
Phillip A. Gall ◽  
Elizabeth Erickson-DiRenzo

2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Pamela Shen ◽  
Fiona J. Whelan ◽  
L. Patrick Schenck ◽  
Joshua J. C. McGrath ◽  
Gilles Vanderstocken ◽  
...  

ABSTRACT Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium, Gemella, and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization.


2009 ◽  
Vol 78 (3) ◽  
pp. 1214-1220 ◽  
Author(s):  
John C. Phipps ◽  
David M. Aronoff ◽  
Jeffrey L. Curtis ◽  
Deepti Goel ◽  
Edmund O'Brien ◽  
...  

ABSTRACT Cigarette smoke exposure increases the risk of pulmonary and invasive infections caused by Streptococcus pneumoniae, the most commonly isolated organism from patients with community-acquired pneumonia. Despite this association, the mechanisms by which cigarette smoke exposure diminishes host defense against S. pneumoniae infections are poorly understood. In this study, we compared the responses of BALB/c mice following an intratracheal challenge with S. pneumoniae after 5 weeks of exposure to room air or cigarette smoke in a whole-body exposure chamber in vivo and the effects of cigarette smoke on alveolar macrophage phagocytosis of S. pneumoniae in vitro. Bacterial burdens in cigarette smoke-exposed mice were increased at 24 and 48 h postinfection, and this was accompanied by a more pronounced clinical appearance of illness, hypothermia, and increased lung homogenate cytokines interleukin-1β (IL-1β), IL-6, IL-10, and tumor necrosis factor alpha (TNF-α). We also found greater numbers of neutrophils in bronchoalveolar lavage fluid recovered from cigarette smoke-exposed mice following a challenge with heat-killed S. pneumoniae. Interestingly, overnight culture of alveolar macrophages with 1% cigarette smoke extract, a level that did not affect alveolar macrophage viability, reduced complement-mediated phagocytosis of S. pneumoniae, while the ingestion of unopsonized bacteria or IgG-coated microspheres was not affected. This murine model provides robust additional support to the hypothesis that cigarette smoke exposure increases the risk of pneumococcal pneumonia and defines a novel cellular mechanism to help explain this immunosuppressive effect.


2021 ◽  
pp. 002203452110094
Author(s):  
Y. Qin ◽  
Y. Liu ◽  
Y. Jiang ◽  
S. Mei ◽  
Y. Liu ◽  
...  

It is widely known that smoking is a risk factor for bone loss and plays a key role in osteopenia. Despite this well-known association, the mechanisms by which smoking affects bone have not been definitively established. Since smoking increases bone loss and potentially affects bone resorption in response to mechanical force, we investigated the impact of cigarette smoke on osteoclast numbers and underlying mechanisms in a mouse model of orthodontic tooth movement (OTM). The experimental group was exposed to once-daily cigarette smoke while the control group was not, and tooth movement distance and osteoclast numbers were assessed. In addition, the effect of cigarette smoke extract (CSE) on osteoclast precursor proliferation and osteoclast apoptosis was assessed in vitro. We found that cigarette smoke exposure enhanced bone remodeling stimulated by mechanical force and increased osteoclast numbers in vivo. Also, CSE increased the number of osteoclasts by inhibiting osteoclast apoptosis via the mitochondrial reactive oxygen species/cytochrome C/caspase 3 pathway in vitro. Moreover, exposure of mice to cigarette smoke affected bone marrow cells, leading to increased formation of osteoclasts in vitro. This study identifies a previously unknown mechanism of how smoking has a detrimental impact on bone.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Mary Figueroa ◽  
Maninder Khosla ◽  
Yue Lu ◽  
Marcos Estecio ◽  
Seyed Javad Moghaddam ◽  
...  

Current and former smoker AML patients have worse survival outcomes compared to never smokers. This worsened prognosis of smokers with AML can also be seen in patients who carry activating mutations of the Fms-like tyrosine kinase 3 (FLT3) and are treated with regimens that include newly approved kinase inhibitors. While the impact of genetic mutations on survival in AML have been studied, and some have been therapeutically targeted, the role of cigarette smoking or cigarette smoke exposure (which is potentially modifiable) on leukemia progression or treatment response is understudied. In order to elucidate molecular effects of cigarette smoke exposure (CSE) that contribute to the poor prognosis of AML patients, we developed a cigarette smoke exposure model for mice to mimic the current and former smoking habits of AML patients. NOD-SCID mice were exposed to CSE in a smoking robot for 2 hours, 5 days/week, for 2 weeks or to air alone as a control. Mice were then injected with luciferase-tagged human AML cell lines, and leukemic burden was monitored through non-invasive bioluminescent imaging. Control "non-smoking" mice were only subject to AML cell injection. Enhanced early leukemic-burden was observed two distinct FLT3-ITD AML models, MOLM13 and MOLM14, within one week post AML introduction (p-value &lt;0.0001 and &lt;0.001 respectively). Although the latter model showed slightly longer latency of disease with increased leukemic burden apparent 24 days post leukemic introduction (p-value &lt;0.05). In order to address if the early increase in leukemic burden may have arisen from extrinsic factors in the tumor microenvironment, we utilized non-leukemia bearing immunocompetent mice exposed to CSE using the 2 week exposure scheme and saw enhanced myeloid progenitor growth, indicating evidence of microenvironment priming of myeloid cells by CSE. One month of CSE increased the MPP1 and MPP2 populations in the bone marrow of NOD-SCID mice. C57BL/6J mice had increased myeloid and hematopoietic stem cell populations after a month of CSE (p-value &lt;0.05). We also modeled the effect of smoking cessation upon leukemia engraftment by halting smoke exposure compared to mice that continued smoking. Cessation significantly slowed leukemic growth in MOLM13 bearing mice (N=10, p-value&lt;0.01). Cigarette smoke exposure globally alters DNA methylation in blood cells and these changes can persist for decades. Independent of mutations, DNA methylation patterns in AML patients have prognostic significance. To understand how CSE accelerated leukemic growth in vivo, DNA methylation was evaluated using reduced representative bisulfite sequencing. More than two hundred significant alterations in DNA methylation across the promoter region of genes were found AML cells from spleen samples of CSE MOLM13-bearing mice as compared to non-smoking mice. Among the genes with the most significantly altered DNA methylation were GATA-2, an important protein for hematopoietic differentiation, and aryl-hydrocarbon receptor repressor (AHRR), a gene whose hypomethylation is a hallmark of cigarette smoke exposure. To identify the impact of cigarette smoke exposure on the leukemia cells in the absence of the tumor microenvironment we treated AML cells directly using a cigarette smoke condensate (CSC) that contains the chemicals in cigarette smoke used in the previously described CSE model. MOLM13 cells either treated with DMSO or 10ug/ml CSC every passage for two weeks were injected into NOD-SCID mice. This model resulted in enhanced leukemic burden 3, 10, and 17 days after leukemic introduction (p-value &lt;0.0001, &lt;0.0001, and &lt;0.001) indicating strong pro-leukemic effects of CSC. Evaluation of in vitro CSC treated AML cells was conducted to identify causes for the enhanced leukemic burden. While CSC treatment yielded no changes in proliferation or survival of the cells over the course of two months, within one week there was increased expression of DNMT1 in several cells lines. Increased basal and maximal oxygen consumption, and modulation of the antioxidant gene, HO-1, was also observed along with modulation of AHRR and GATA-2, reinforcing roles for methylation data gained from in vivo CSE experiments. Discovering the mechanisms promoting AML progression from cigarette smoke exposure will lead to improved, tailored treatment for AML patients with smoking histories and our further studies of these gene changes will aid in that endeavor. Disclosures Jabbour: Takeda: Other: Advisory role, Research Funding; AbbVie: Other: Advisory role, Research Funding; Amgen: Other: Advisory role, Research Funding; Pfizer: Other: Advisory role, Research Funding; Genentech: Other: Advisory role, Research Funding; BMS: Other: Advisory role, Research Funding; Adaptive Biotechnologies: Other: Advisory role, Research Funding. Konopleva:Genentech: Consultancy, Research Funding; Ascentage: Research Funding; Forty-Seven: Consultancy, Research Funding; Calithera: Research Funding; F. Hoffmann La-Roche: Consultancy, Research Funding; Reata Pharmaceutical Inc.;: Patents & Royalties: patents and royalties with patent US 7,795,305 B2 on CDDO-compounds and combination therapies, licensed to Reata Pharmaceutical; Ablynx: Research Funding; Agios: Research Funding; Amgen: Consultancy; AstraZeneca: Research Funding; Eli Lilly: Research Funding; Kisoji: Consultancy; Cellectis: Research Funding; Rafael Pharmaceutical: Research Funding; AbbVie: Consultancy, Research Funding; Stemline Therapeutics: Consultancy, Research Funding; Sanofi: Research Funding. DiNardo:Agios: Consultancy, Honoraria, Research Funding; Syros: Honoraria; AbbVie: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Takeda: Honoraria; Calithera: Research Funding; Daiichi Sankyo: Consultancy, Honoraria, Research Funding; Notable Labs: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; MedImmune: Honoraria; ImmuneOnc: Honoraria; Jazz: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document