scholarly journals Sediment Delivery Ratio of Single Flood Events and the Influencing Factors in a Headwater Basin of the Chinese Loess Plateau

PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112594 ◽  
Author(s):  
Mingguo Zheng ◽  
Yishan Liao ◽  
Jijun He
2020 ◽  
Vol 45 (8) ◽  
pp. 1777-1788
Author(s):  
Lishan Ran ◽  
Xiankun Yang ◽  
Mingyang Tian ◽  
Hongyan Shi ◽  
Shaoda Liu ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 36-46
Author(s):  
Peng He ◽  
Lishuai Xu ◽  
Zhengchun Liu ◽  
Yaodong Jing ◽  
Wenbo Zhu

Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 901
Author(s):  
Lulu Qu ◽  
Yurui Li ◽  
Yunxin Huang ◽  
Xuanchang Zhang ◽  
Jilai Liu

Exploring the gully agricultural production transformation and its influencing factors is of considerable significance to the evolution of the human–land relationship and multifunctional transformation of gully agriculture in the context of new development. This paper tries to reveal intensive land use under the background of population contraction in the Chinese Loess Plateau and its transformation trend by defining the gully agricultural production transformation (GAPT). Given the representativeness of land-use change in the loess hilly and gully region (LHGR) was taken as a case study, and ArcGIS spatial analysis techniques and geographically and temporally weighted regression model (GTWR) were used to detect the spatio-temporal differentiation pattern and influencing factors. The results show that: (1) GAPT shifts from the high elevation area of 1000–1300 m to the low elevation area of <1000 m, and the transformation process remains within the range of slope 0–20° and topographic relief between 40 m and 180 m. (2) GTWR coupled with time non-stationary and spatial heterogeneity has a better fitting effect, which verifies its applicability in the study of GAPT. Social and economic factors were the main driving forces of GAPT in Yan’an City in the past 20 years, and they were increasing year by year. (3) The spatial-temporal distribution of the driving factors of the agricultural production transformation in Yan’an City is different. The intensity of the population factor and the slope factor is always in the dominant position, and the high value distribution area of the land average GDP factor forms a funnel-shaped pattern of “core edge” in the north and the central and western regions, and its changes tend to “flow” to the core. (4) The gully agricultural production transformation can reflect the general law of rural land use transition in gully areas, and thereby provide policy ideas for gully development. Overall, this study’s content can provide scientific guidance for the sustainable development of gully agriculture and the revitalization of watershed and land consolidation in gully areas.


2017 ◽  
Vol 37 (24) ◽  
Author(s):  
朱洪芬 ZHU Hongfen ◽  
南锋 NAN Feng ◽  
徐占军 XU Zhanjun ◽  
荆耀栋 JING Yaodong ◽  
段永红 DUAN Yonghong ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-wang Zhang ◽  
Kai-bo Wang ◽  
Jun Wang ◽  
Changhai Liu ◽  
Zhou-ping Shangguan

AbstractChanges in land use type can lead to variations in soil water characteristics. The objective of this study was to identify the responses of soil water holding capacity (SWHC) and soil water availability (SWA) to land use type (grassland, shrubland and forestland). The soil water characteristic curve describes the relationship between gravimetric water content and soil suction. We measured the soil water characteristic parameters representing SWHC and SWA, which we derived from soil water characteristic curves, in the 0–50 cm soil layer at sites representing three land use types in the Ziwuling forest region, located in the central part of the Loess Plateau, China. Our results showed that the SWHC was higher at the woodland site than the grassland and shrubland, and there was no significant difference between the latter two sites, the trend of SWA was similar to the SWHC. From grassland to woodland, the soil physical properties in the 0–50 cm soil layer partially improved, BD was significantly higher at the grassland site than at the shrubland and woodland sites, the clay and silt contents decreased significantly from grassland to shrubland to woodland and sand content showed the opposite pattern, the soil porosity was higher in the shrubland and woodland than that in the grassland, the soil physical properties across the 0–50 cm soil layer improved. Soil texture, porosity and bulk density were the key factors affecting SWHC and SWA. The results of this study provide insight into the effects of vegetation restoration on local hydrological resources and can inform soil water management and land use planning on the Chinese Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document