scholarly journals Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119835 ◽  
Author(s):  
Vera S. Bogdanova ◽  
Olga O. Zaytseva ◽  
Anatoliy V. Mglinets ◽  
Natalia V. Shatskaya ◽  
Oleg E. Kosterin ◽  
...  
2007 ◽  
Vol 114 (6) ◽  
pp. 971-984 ◽  
Author(s):  
S. Prioul-Gervais ◽  
G. Deniot ◽  
E-M. Receveur ◽  
A. Frankewitz ◽  
M. Fourmann ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e114712 ◽  
Author(s):  
Hongle Xu ◽  
Wenpan Zhang ◽  
Teng Zhang ◽  
Jun Li ◽  
Xian Wu ◽  
...  

1988 ◽  
Vol 250 (1) ◽  
pp. 15-24 ◽  
Author(s):  
J A Gatehouse ◽  
D Bown ◽  
J Gilroy ◽  
M Levasseur ◽  
J Castleton ◽  
...  

A genomic clone from pea (Pisum sativum L.) contains all of one gene encoding a ‘minor’ (B-type) legumin polypeptide, and most of a second very similar gene. The two genes, designated LegJ and LegK, are arranged in tandem, separated by approx. 6 kb. A complete sequence of gene LegJ and its flanking sequences is given, with as much of the sequence of gene LegK as is present on the genomic clone. Hybridization of 3′ flanking sequence probes to seed mRNA, and sequence comparisons with cDNA species, suggested that gene LegJ, and probably gene LegK, was expressed. The partial amino acid sequences of ‘minor’ legumin α- and beta-polypeptides were used to confirm the identity of these genes. The transciption start in gene LegJ was mapped. The 5′ flanking sequence of gene LegJ contains a sequence conserved in legumin genes from pea and other species, which is likely to have functional significance in control of gene expression. Sequence comparisons with legumin genes and cDNA species from Vicia faba and soya bean show that separation of legumin genes into A- and B-type subfamilies occurred before separation of the Viciae and Glycinae tribes.


2009 ◽  
Vol 25 (3) ◽  
pp. 381-395 ◽  
Author(s):  
Hou Yang Kang ◽  
Xing Fan ◽  
Hai Qin Zhang ◽  
Li Na Sha ◽  
Gen Lou Sun ◽  
...  

Author(s):  
Sarah Powers ◽  
J Lucas Boatwright ◽  
Dil Thavarajah

Abstract Pea (Pisum sativum L.) is an important cool season food legume for sustainable food production and human nutrition due to its nitrogen fixation capabilities and nutrient-dense seed. However, minimal breeding research has been conducted to improve the nutritional quality of the seed for biofortification, and most genomic-assisted breeding studies utilize small populations with few single nucleotide polymorphisms (SNPs). Genomic resources for pea have lagged behind those of other grain crops, but the recent release of the Pea Single Plant Plus Collection (PSPPC) and the pea reference genome provide new tools to study nutritional traits for biofortification. Calcium, phosphorus, potassium, iron, zinc, and phytic acid concentrations were measured in a study population of 299 different accessions grown under greenhouse conditions. Broad phenotypic variation was detected for all parameters except phytic acid. Calcium exhibited moderate broad-sense heritability (H2) estimates, at 50%, while all other minerals exhibited low heritability. Of the accessions used, 267 were previously genotyped in the PSPPC release by the USDA, and we mapped the genotyping data to the pea reference genome for the first time. This study generated 54,344 high-quality SNPs used to investigate the population structure of the Pea Single Plant Plus Collection and perform a genome-wide association study to identify genomic loci associated with mineral concentrations in mature pea seed. Overall, we were able to identify multiple significant SNPs and candidate genes for iron, phosphorus, and zinc. These results can be used for genetic improvement in pea for nutritional traits and biofortification, and the candidate genes provide insight into mineral metabolism.


2021 ◽  
Vol 9 (12) ◽  
pp. 2458
Author(s):  
Alexey M. Afonin ◽  
Emma S. Gribchenko ◽  
Evgeny A. Zorin ◽  
Anton S. Sulima ◽  
Vladimir A. Zhukov

Rhizobium leguminosarum (Rl) is a common name for several genospecies of rhizobia able to form nitrogen-fixing nodules on the roots of pea (Pisum sativum L.) while undergoing terminal differentiation into a symbiotic form called bacteroids. In this work, we used Oxford Nanopore sequencing to analyze the genome methylation states of the free-living and differentiated forms of the Rl strain RCAM1026. The complete genome was assembled; no significant genome rearrangements between the cell forms were observed, but the relative abundances of replicons were different. GANTC, GGCGCC, and GATC methylated motifs were found in the genome, along with genes encoding methyltransferases with matching predicted target motifs. The GGCGCC motif was completely methylated in both states, with two restriction–modification clusters on different replicons enforcing this specific pattern of methylation. Methylation patterns for the GANTC and GATC motifs differed significantly depending on the cell state, which indicates their possible connection to the regulation of symbiotic differentiation. Further investigation into the differences of methylation patterns in the bacterial genomes coupled with gene expression analysis is needed to elucidate the function of bacterial epigenetic regulation in nitrogen-fixing symbiosis.


Sign in / Sign up

Export Citation Format

Share Document